MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegxrf Structured version   Visualization version   GIF version

Theorem mdegxrf 26000
Description: Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegxrcl.d 𝐷 = (𝐼 mDeg 𝑅)
mdegxrcl.p 𝑃 = (𝐼 mPoly 𝑅)
mdegxrcl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
mdegxrf 𝐷:𝐵⟶ℝ*

Proof of Theorem mdegxrf
Dummy variables 𝑥 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13040 . . . 4 < Or ℝ*
21supex 9348 . . 3 sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝑧 supp (0g𝑅))), ℝ*, < ) ∈ V
3 mdegxrcl.d . . . 4 𝐷 = (𝐼 mDeg 𝑅)
4 mdegxrcl.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
5 mdegxrcl.b . . . 4 𝐵 = (Base‘𝑃)
6 eqid 2731 . . . 4 (0g𝑅) = (0g𝑅)
7 eqid 2731 . . . 4 {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
8 eqid 2731 . . . 4 (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
93, 4, 5, 6, 7, 8mdegfval 25994 . . 3 𝐷 = (𝑧𝐵 ↦ sup(((𝑦 ∈ {𝑥 ∈ (ℕ0m 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝑧 supp (0g𝑅))), ℝ*, < ))
102, 9fnmpti 6624 . 2 𝐷 Fn 𝐵
113, 4, 5mdegxrcl 25999 . . 3 (𝑓𝐵 → (𝐷𝑓) ∈ ℝ*)
1211rgen 3049 . 2 𝑓𝐵 (𝐷𝑓) ∈ ℝ*
13 ffnfv 7052 . 2 (𝐷:𝐵⟶ℝ* ↔ (𝐷 Fn 𝐵 ∧ ∀𝑓𝐵 (𝐷𝑓) ∈ ℝ*))
1410, 12, 13mpbir2an 711 1 𝐷:𝐵⟶ℝ*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cmpt 5170  ccnv 5613  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  m cmap 8750  Fincfn 8869  supcsup 9324  *cxr 11145   < clt 11146  cn 12125  0cn0 12381  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  fldccnfld 21291   mPoly cmpl 21843   mDeg cmdg 25985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-ur 20100  df-ring 20153  df-cring 20154  df-cnfld 21292  df-psr 21846  df-mpl 21848  df-mdeg 25987
This theorem is referenced by:  deg1xrf  26013
  Copyright terms: Public domain W3C validator