Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mdegxrf | Structured version Visualization version GIF version |
Description: Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
Ref | Expression |
---|---|
mdegxrcl.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdegxrcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mdegxrcl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
mdegxrf | ⊢ 𝐷:𝐵⟶ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12760 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | supex 9108 | . . 3 ⊢ sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝑧 supp (0g‘𝑅))), ℝ*, < ) ∈ V |
3 | mdegxrcl.d | . . . 4 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
4 | mdegxrcl.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
5 | mdegxrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
6 | eqid 2739 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | eqid 2739 | . . . 4 ⊢ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
8 | eqid 2739 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) | |
9 | 3, 4, 5, 6, 7, 8 | mdegfval 24991 | . . 3 ⊢ 𝐷 = (𝑧 ∈ 𝐵 ↦ sup(((𝑦 ∈ {𝑥 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝑧 supp (0g‘𝑅))), ℝ*, < )) |
10 | 2, 9 | fnmpti 6542 | . 2 ⊢ 𝐷 Fn 𝐵 |
11 | 3, 4, 5 | mdegxrcl 24996 | . . 3 ⊢ (𝑓 ∈ 𝐵 → (𝐷‘𝑓) ∈ ℝ*) |
12 | 11 | rgen 3074 | . 2 ⊢ ∀𝑓 ∈ 𝐵 (𝐷‘𝑓) ∈ ℝ* |
13 | ffnfv 6956 | . 2 ⊢ (𝐷:𝐵⟶ℝ* ↔ (𝐷 Fn 𝐵 ∧ ∀𝑓 ∈ 𝐵 (𝐷‘𝑓) ∈ ℝ*)) | |
14 | 10, 12, 13 | mpbir2an 711 | 1 ⊢ 𝐷:𝐵⟶ℝ* |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 ∀wral 3064 {crab 3068 ↦ cmpt 5151 ◡ccnv 5567 “ cima 5571 Fn wfn 6395 ⟶wf 6396 ‘cfv 6400 (class class class)co 7234 supp csupp 7926 ↑m cmap 8531 Fincfn 8649 supcsup 9085 ℝ*cxr 10895 < clt 10896 ℕcn 11859 ℕ0cn0 12119 Basecbs 16792 0gc0g 16976 Σg cgsu 16977 ℂfldccnfld 20395 mPoly cmpl 20896 mDeg cmdg 24979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-pre-sup 10836 ax-addf 10837 ax-mulf 10838 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9015 df-sup 9087 df-oi 9155 df-card 9584 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-7 11927 df-8 11928 df-9 11929 df-n0 12120 df-z 12206 df-dec 12323 df-uz 12468 df-fz 13125 df-fzo 13268 df-seq 13606 df-hash 13929 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-starv 16849 df-sca 16850 df-vsca 16851 df-tset 16853 df-ple 16854 df-ds 16856 df-unif 16857 df-0g 16978 df-gsum 16979 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-submnd 18251 df-grp 18400 df-minusg 18401 df-cntz 18743 df-cmn 19204 df-abl 19205 df-mgp 19537 df-ur 19549 df-ring 19596 df-cring 19597 df-cnfld 20396 df-psr 20899 df-mpl 20901 df-mdeg 24981 |
This theorem is referenced by: deg1xrf 25010 |
Copyright terms: Public domain | W3C validator |