MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval Structured version   Visualization version   GIF version

Theorem prdsdsval 17538
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsdsval.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem prdsdsval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.s . . 3 (𝜑𝑆𝑉)
3 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 fnex 7254 . . . 4 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 583 . . 3 (𝜑𝑅 ∈ V)
7 prdsbasmpt.b . . 3 𝐵 = (Base‘𝑌)
8 fndm 6682 . . . 4 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
93, 8syl 17 . . 3 (𝜑 → dom 𝑅 = 𝐼)
10 prdsdsval.d . . 3 𝐷 = (dist‘𝑌)
111, 2, 6, 7, 9, 10prdsds 17524 . 2 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 fveq1 6919 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6919 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
1412, 13oveqan12d 7467 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)) = ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥)))
1514adantl 481 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)) = ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥)))
1615mpteq2dv 5268 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))))
1716rneqd 5963 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))))
1817uneq1d 4190 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}))
1918supeq1d 9515 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
20 prdsplusgval.f . 2 (𝜑𝐹𝐵)
21 prdsplusgval.g . 2 (𝜑𝐺𝐵)
22 xrltso 13203 . . . 4 < Or ℝ*
2322supex 9532 . . 3 sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ) ∈ V
2423a1i 11 . 2 (𝜑 → sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ) ∈ V)
2511, 19, 20, 21, 24ovmpod 7602 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  {csn 4648  cmpt 5249  dom cdm 5700  ran crn 5701   Fn wfn 6568  cfv 6573  (class class class)co 7448  supcsup 9509  0cc0 11184  *cxr 11323   < clt 11324  Basecbs 17258  distcds 17320  Xscprds 17505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-prds 17507
This theorem is referenced by:  prdsdsval2  17544  xpsdsval  24412
  Copyright terms: Public domain W3C validator