MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval Structured version   Visualization version   GIF version

Theorem prdsdsval 16754
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsdsval.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem prdsdsval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.s . . 3 (𝜑𝑆𝑉)
3 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 fnex 6983 . . . 4 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 586 . . 3 (𝜑𝑅 ∈ V)
7 prdsbasmpt.b . . 3 𝐵 = (Base‘𝑌)
8 fndm 6458 . . . 4 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
93, 8syl 17 . . 3 (𝜑 → dom 𝑅 = 𝐼)
10 prdsdsval.d . . 3 𝐷 = (dist‘𝑌)
111, 2, 6, 7, 9, 10prdsds 16740 . 2 (𝜑𝐷 = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 fveq1 6672 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6672 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
1412, 13oveqan12d 7178 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)) = ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥)))
1514adantl 484 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥)) = ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥)))
1615mpteq2dv 5165 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))))
1716rneqd 5811 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))))
1817uneq1d 4141 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}))
1918supeq1d 8913 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
20 prdsplusgval.f . 2 (𝜑𝐹𝐵)
21 prdsplusgval.g . 2 (𝜑𝐺𝐵)
22 xrltso 12537 . . . 4 < Or ℝ*
2322supex 8930 . . 3 sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ) ∈ V
2423a1i 11 . 2 (𝜑 → sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ) ∈ V)
2511, 19, 20, 21, 24ovmpod 7305 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘(𝑅𝑥))(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cun 3937  {csn 4570  cmpt 5149  dom cdm 5558  ran crn 5559   Fn wfn 6353  cfv 6358  (class class class)co 7159  supcsup 8907  0cc0 10540  *cxr 10677   < clt 10678  Basecbs 16486  distcds 16577  Xscprds 16722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-prds 16724
This theorem is referenced by:  prdsdsval2  16760  xpsdsval  22994
  Copyright terms: Public domain W3C validator