![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdegval | Structured version Visualization version GIF version |
Description: Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
Ref | Expression |
---|---|
mdegval.d | ⊢ 𝐷 = (𝐼 mDeg 𝑅) |
mdegval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mdegval.b | ⊢ 𝐵 = (Base‘𝑃) |
mdegval.z | ⊢ 0 = (0g‘𝑅) |
mdegval.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
mdegval.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
Ref | Expression |
---|---|
mdegval | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7437 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 supp 0 ) = (𝐹 supp 0 )) | |
2 | 1 | imaeq2d 6079 | . . 3 ⊢ (𝑓 = 𝐹 → (𝐻 “ (𝑓 supp 0 )) = (𝐻 “ (𝐹 supp 0 ))) |
3 | 2 | supeq1d 9483 | . 2 ⊢ (𝑓 = 𝐹 → sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
4 | mdegval.d | . . 3 ⊢ 𝐷 = (𝐼 mDeg 𝑅) | |
5 | mdegval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
6 | mdegval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
7 | mdegval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
8 | mdegval.a | . . 3 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
9 | mdegval.h | . . 3 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
10 | 4, 5, 6, 7, 8, 9 | mdegfval 26115 | . 2 ⊢ 𝐷 = (𝑓 ∈ 𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) |
11 | xrltso 13179 | . . 3 ⊢ < Or ℝ* | |
12 | 11 | supex 9500 | . 2 ⊢ sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ V |
13 | 3, 10, 12 | fvmpt 7015 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 {crab 3432 ↦ cmpt 5230 ◡ccnv 5687 “ cima 5691 ‘cfv 6562 (class class class)co 7430 supp csupp 8183 ↑m cmap 8864 Fincfn 8983 supcsup 9477 ℝ*cxr 11291 < clt 11292 ℕcn 12263 ℕ0cn0 12523 Basecbs 17244 0gc0g 17485 Σg cgsu 17486 ℂfldccnfld 21381 mPoly cmpl 21943 mDeg cmdg 26106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-psr 21946 df-mpl 21948 df-mdeg 26108 |
This theorem is referenced by: mdegleb 26117 mdeglt 26118 mdegldg 26119 mdegxrcl 26120 mdegcl 26122 mdeg0 26123 mdegvsca 26129 deg1val 26149 |
Copyright terms: Public domain | W3C validator |