MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegval Structured version   Visualization version   GIF version

Theorem mdegval 26122
Description: Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
mdegval (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝐼()   0 (𝑚)

Proof of Theorem mdegval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . 4 (𝑓 = 𝐹 → (𝑓 supp 0 ) = (𝐹 supp 0 ))
21imaeq2d 6089 . . 3 (𝑓 = 𝐹 → (𝐻 “ (𝑓 supp 0 )) = (𝐻 “ (𝐹 supp 0 )))
32supeq1d 9515 . 2 (𝑓 = 𝐹 → sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
4 mdegval.d . . 3 𝐷 = (𝐼 mDeg 𝑅)
5 mdegval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
6 mdegval.b . . 3 𝐵 = (Base‘𝑃)
7 mdegval.z . . 3 0 = (0g𝑅)
8 mdegval.a . . 3 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
9 mdegval.h . . 3 𝐻 = (𝐴 ↦ (ℂfld Σg ))
104, 5, 6, 7, 8, 9mdegfval 26121 . 2 𝐷 = (𝑓𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < ))
11 xrltso 13203 . . 3 < Or ℝ*
1211supex 9532 . 2 sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ V
133, 10, 12fvmpt 7029 1 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003  supcsup 9509  *cxr 11323   < clt 11324  cn 12293  0cn0 12553  Basecbs 17258  0gc0g 17499   Σg cgsu 17500  fldccnfld 21387   mPoly cmpl 21949   mDeg cmdg 26112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-tset 17330  df-psr 21952  df-mpl 21954  df-mdeg 26114
This theorem is referenced by:  mdegleb  26123  mdeglt  26124  mdegldg  26125  mdegxrcl  26126  mdegcl  26128  mdeg0  26129  mdegvsca  26135  deg1val  26155
  Copyright terms: Public domain W3C validator