Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfval | Structured version Visualization version GIF version |
Description: The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
liminfval | ⊢ (𝐹 ∈ 𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-liminf 43247 | . 2 ⊢ lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | |
2 | imaeq1 5961 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
3 | 2 | ineq1d 4150 | . . . . . . 7 ⊢ (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
4 | 3 | infeq1d 9197 | . . . . . 6 ⊢ (𝑥 = 𝐹 → inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
5 | 4 | mpteq2dv 5180 | . . . . 5 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
6 | liminfval.1 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝐹 → 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
8 | 5, 7 | eqtr4d 2782 | . . . 4 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
9 | 8 | rneqd 5844 | . . 3 ⊢ (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
10 | 9 | supeq1d 9166 | . 2 ⊢ (𝑥 = 𝐹 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < )) |
11 | elex 3448 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
12 | xrltso 12857 | . . . 4 ⊢ < Or ℝ* | |
13 | 12 | supex 9183 | . . 3 ⊢ sup(ran 𝐺, ℝ*, < ) ∈ V |
14 | 13 | a1i 11 | . 2 ⊢ (𝐹 ∈ 𝑉 → sup(ran 𝐺, ℝ*, < ) ∈ V) |
15 | 1, 10, 11, 14 | fvmptd3 6892 | 1 ⊢ (𝐹 ∈ 𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 ↦ cmpt 5161 ran crn 5589 “ cima 5591 ‘cfv 6430 (class class class)co 7268 supcsup 9160 infcinf 9161 ℝcr 10854 +∞cpnf 10990 ℝ*cxr 10992 < clt 10993 [,)cico 13063 lim infclsi 43246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-liminf 43247 |
This theorem is referenced by: liminfcl 43258 liminfvald 43259 liminfval5 43260 liminfresxr 43262 liminfval2 43263 liminfvalxr 43278 |
Copyright terms: Public domain | W3C validator |