| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfval | Structured version Visualization version GIF version | ||
| Description: The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Ref | Expression |
|---|---|
| liminfval | ⊢ (𝐹 ∈ 𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-liminf 45796 | . 2 ⊢ lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | |
| 2 | imaeq1 6004 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
| 3 | 2 | ineq1d 4169 | . . . . . . 7 ⊢ (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 4 | 3 | infeq1d 9362 | . . . . . 6 ⊢ (𝑥 = 𝐹 → inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 5 | 4 | mpteq2dv 5185 | . . . . 5 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 6 | liminfval.1 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝐹 → 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 8 | 5, 7 | eqtr4d 2769 | . . . 4 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
| 9 | 8 | rneqd 5878 | . . 3 ⊢ (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
| 10 | 9 | supeq1d 9330 | . 2 ⊢ (𝑥 = 𝐹 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < )) |
| 11 | elex 3457 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 12 | xrltso 13040 | . . . 4 ⊢ < Or ℝ* | |
| 13 | 12 | supex 9348 | . . 3 ⊢ sup(ran 𝐺, ℝ*, < ) ∈ V |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝐹 ∈ 𝑉 → sup(ran 𝐺, ℝ*, < ) ∈ V) |
| 15 | 1, 10, 11, 14 | fvmptd3 6952 | 1 ⊢ (𝐹 ∈ 𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ↦ cmpt 5172 ran crn 5617 “ cima 5619 ‘cfv 6481 (class class class)co 7346 supcsup 9324 infcinf 9325 ℝcr 11005 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 [,)cico 13247 lim infclsi 45795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-liminf 45796 |
| This theorem is referenced by: liminfcl 45807 liminfvald 45808 liminfval5 45809 liminfresxr 45811 liminfval2 45812 liminfvalxr 45827 |
| Copyright terms: Public domain | W3C validator |