Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval Structured version   Visualization version   GIF version

Theorem liminfval 45788
Description: The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
liminfval.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
liminfval (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-liminf 45781 . 2 lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2 imaeq1 6042 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
32ineq1d 4194 . . . . . . 7 (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
43infeq1d 9490 . . . . . 6 (𝑥 = 𝐹 → inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54mpteq2dv 5215 . . . . 5 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
6 liminfval.1 . . . . . 6 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
76a1i 11 . . . . 5 (𝑥 = 𝐹𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
85, 7eqtr4d 2773 . . . 4 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺)
98rneqd 5918 . . 3 (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺)
109supeq1d 9458 . 2 (𝑥 = 𝐹 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < ))
11 elex 3480 . 2 (𝐹𝑉𝐹 ∈ V)
12 xrltso 13157 . . . 4 < Or ℝ*
1312supex 9476 . . 3 sup(ran 𝐺, ℝ*, < ) ∈ V
1413a1i 11 . 2 (𝐹𝑉 → sup(ran 𝐺, ℝ*, < ) ∈ V)
151, 10, 11, 14fvmptd3 7009 1 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  cmpt 5201  ran crn 5655  cima 5657  cfv 6531  (class class class)co 7405  supcsup 9452  infcinf 9453  cr 11128  +∞cpnf 11266  *cxr 11268   < clt 11269  [,)cico 13364  lim infclsi 45780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-liminf 45781
This theorem is referenced by:  liminfcl  45792  liminfvald  45793  liminfval5  45794  liminfresxr  45796  liminfval2  45797  liminfvalxr  45812
  Copyright terms: Public domain W3C validator