Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval Structured version   Visualization version   GIF version

Theorem liminfval 45741
Description: The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
liminfval.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
liminfval (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-liminf 45734 . 2 lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2 imaeq1 6010 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
32ineq1d 4172 . . . . . . 7 (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
43infeq1d 9387 . . . . . 6 (𝑥 = 𝐹 → inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54mpteq2dv 5189 . . . . 5 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
6 liminfval.1 . . . . . 6 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
76a1i 11 . . . . 5 (𝑥 = 𝐹𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
85, 7eqtr4d 2767 . . . 4 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺)
98rneqd 5884 . . 3 (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺)
109supeq1d 9355 . 2 (𝑥 = 𝐹 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < ))
11 elex 3459 . 2 (𝐹𝑉𝐹 ∈ V)
12 xrltso 13061 . . . 4 < Or ℝ*
1312supex 9373 . . 3 sup(ran 𝐺, ℝ*, < ) ∈ V
1413a1i 11 . 2 (𝐹𝑉 → sup(ran 𝐺, ℝ*, < ) ∈ V)
151, 10, 11, 14fvmptd3 6957 1 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  cmpt 5176  ran crn 5624  cima 5626  cfv 6486  (class class class)co 7353  supcsup 9349  infcinf 9350  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  [,)cico 13268  lim infclsi 45733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-liminf 45734
This theorem is referenced by:  liminfcl  45745  liminfvald  45746  liminfval5  45747  liminfresxr  45749  liminfval2  45750  liminfvalxr  45765
  Copyright terms: Public domain W3C validator