Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval Structured version   Visualization version   GIF version

Theorem liminfval 45680
Description: The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
liminfval.1 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
liminfval (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem liminfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-liminf 45673 . 2 lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
2 imaeq1 6084 . . . . . . . 8 (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
32ineq1d 4240 . . . . . . 7 (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
43infeq1d 9546 . . . . . 6 (𝑥 = 𝐹 → inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
54mpteq2dv 5268 . . . . 5 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
6 liminfval.1 . . . . . 6 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
76a1i 11 . . . . 5 (𝑥 = 𝐹𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
85, 7eqtr4d 2783 . . . 4 (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺)
98rneqd 5963 . . 3 (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺)
109supeq1d 9515 . 2 (𝑥 = 𝐹 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = sup(ran 𝐺, ℝ*, < ))
11 elex 3509 . 2 (𝐹𝑉𝐹 ∈ V)
12 xrltso 13203 . . . 4 < Or ℝ*
1312supex 9532 . . 3 sup(ran 𝐺, ℝ*, < ) ∈ V
1413a1i 11 . 2 (𝐹𝑉 → sup(ran 𝐺, ℝ*, < ) ∈ V)
151, 10, 11, 14fvmptd3 7052 1 (𝐹𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  cmpt 5249  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  supcsup 9509  infcinf 9510  cr 11183  +∞cpnf 11321  *cxr 11323   < clt 11324  [,)cico 13409  lim infclsi 45672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-liminf 45673
This theorem is referenced by:  liminfcl  45684  liminfvald  45685  liminfval5  45686  liminfresxr  45688  liminfval2  45689  liminfvalxr  45704
  Copyright terms: Public domain W3C validator