![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsdsfn | Structured version Visualization version GIF version |
Description: Structure product distance function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
Ref | Expression |
---|---|
prdsbas.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
prdsbas.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
prdsbas.b | ⊢ 𝐵 = (Base‘𝑃) |
prdsbas.i | ⊢ (𝜑 → dom 𝑅 = 𝐼) |
prdsds.l | ⊢ 𝐷 = (dist‘𝑃) |
Ref | Expression |
---|---|
prdsdsfn | ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )) | |
2 | xrltso 13174 | . . . 4 ⊢ < Or ℝ* | |
3 | 2 | supex 9506 | . . 3 ⊢ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ) ∈ V |
4 | 1, 3 | fnmpoi 8084 | . 2 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )) Fn (𝐵 × 𝐵) |
5 | prdsbas.p | . . . 4 ⊢ 𝑃 = (𝑆Xs𝑅) | |
6 | prdsbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
7 | prdsbas.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
8 | prdsbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | prdsbas.i | . . . 4 ⊢ (𝜑 → dom 𝑅 = 𝐼) | |
10 | prdsds.l | . . . 4 ⊢ 𝐷 = (dist‘𝑃) | |
11 | 5, 6, 7, 8, 9, 10 | prdsds 17479 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) |
12 | 11 | fneq1d 6653 | . 2 ⊢ (𝜑 → (𝐷 Fn (𝐵 × 𝐵) ↔ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < )) Fn (𝐵 × 𝐵))) |
13 | 4, 12 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 {csn 4633 ↦ cmpt 5236 × cxp 5680 dom cdm 5682 ran crn 5683 Fn wfn 6549 ‘cfv 6554 (class class class)co 7424 ∈ cmpo 7426 supcsup 9483 0cc0 11158 ℝ*cxr 11297 < clt 11298 Basecbs 17213 distcds 17275 Xscprds 17460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-hom 17290 df-cco 17291 df-prds 17462 |
This theorem is referenced by: ressprdsds 24368 |
Copyright terms: Public domain | W3C validator |