Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuplt2 | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsuplt2.1 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
limsuplt2.2 | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
limsuplt2.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
limsuplt2 | ⊢ (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuplt2.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
2 | limsuplt2.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
3 | limsuplt2.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | eqid 2738 | . . . 4 ⊢ (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
5 | 4 | limsuplt 14927 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴)) |
6 | 1, 2, 3, 5 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴)) |
7 | oveq1 7178 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → (𝑗[,)+∞) = (𝑖[,)+∞)) | |
8 | 7 | imaeq2d 5904 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑖[,)+∞))) |
9 | 8 | ineq1d 4103 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)) |
10 | 9 | supeq1d 8984 | . . . . 5 ⊢ (𝑗 = 𝑖 → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
11 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → 𝑖 ∈ ℝ) | |
12 | xrltso 12618 | . . . . . . 7 ⊢ < Or ℝ* | |
13 | 12 | supex 9001 | . . . . . 6 ⊢ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V) |
15 | 4, 10, 11, 14 | fvmptd3 6799 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
16 | 15 | breq1d 5041 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
17 | 16 | rexbidva 3206 | . 2 ⊢ (𝜑 → (∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ ∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
18 | oveq1 7178 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝑖[,)+∞) = (𝑘[,)+∞)) | |
19 | 18 | imaeq2d 5904 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
20 | 19 | ineq1d 4103 | . . . . . 6 ⊢ (𝑖 = 𝑘 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
21 | 20 | supeq1d 8984 | . . . . 5 ⊢ (𝑖 = 𝑘 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
22 | 21 | breq1d 5041 | . . . 4 ⊢ (𝑖 = 𝑘 → (sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
23 | 22 | cbvrexvw 3350 | . . 3 ⊢ (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
25 | 6, 17, 24 | 3bitrd 308 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∃wrex 3054 Vcvv 3398 ∩ cin 3843 ⊆ wss 3844 class class class wbr 5031 ↦ cmpt 5111 “ cima 5529 ⟶wf 6336 ‘cfv 6340 (class class class)co 7171 supcsup 8978 ℝcr 10615 +∞cpnf 10751 ℝ*cxr 10753 < clt 10754 [,)cico 12824 lim supclsp 14918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 ax-pre-sup 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-po 5443 df-so 5444 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-sup 8980 df-inf 8981 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-limsup 14919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |