| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsuplt2 | Structured version Visualization version GIF version | ||
| Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsuplt2.1 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| limsuplt2.2 | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
| limsuplt2.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| limsuplt2 | ⊢ (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsuplt2.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 2 | limsuplt2.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
| 3 | limsuplt2.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | eqid 2733 | . . . 4 ⊢ (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 5 | 4 | limsuplt 15390 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴)) |
| 7 | oveq1 7361 | . . . . . . . 8 ⊢ (𝑗 = 𝑖 → (𝑗[,)+∞) = (𝑖[,)+∞)) | |
| 8 | 7 | imaeq2d 6015 | . . . . . . 7 ⊢ (𝑗 = 𝑖 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑖[,)+∞))) |
| 9 | 8 | ineq1d 4168 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*)) |
| 10 | 9 | supeq1d 9339 | . . . . 5 ⊢ (𝑗 = 𝑖 → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 11 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → 𝑖 ∈ ℝ) | |
| 12 | xrltso 13044 | . . . . . . 7 ⊢ < Or ℝ* | |
| 13 | 12 | supex 9357 | . . . . . 6 ⊢ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V) |
| 15 | 4, 10, 11, 14 | fvmptd3 6960 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 16 | 15 | breq1d 5105 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℝ) → (((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
| 17 | 16 | rexbidva 3155 | . 2 ⊢ (𝜑 → (∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ ∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
| 18 | oveq1 7361 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝑖[,)+∞) = (𝑘[,)+∞)) | |
| 19 | 18 | imaeq2d 6015 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) |
| 20 | 19 | ineq1d 4168 | . . . . . 6 ⊢ (𝑖 = 𝑘 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 21 | 20 | supeq1d 9339 | . . . . 5 ⊢ (𝑖 = 𝑘 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 22 | 21 | breq1d 5105 | . . . 4 ⊢ (𝑖 = 𝑘 → (sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
| 23 | 22 | cbvrexvw 3212 | . . 3 ⊢ (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴) |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
| 25 | 6, 17, 24 | 3bitrd 305 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 “ cima 5624 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 supcsup 9333 ℝcr 11014 +∞cpnf 11152 ℝ*cxr 11154 < clt 11155 [,)cico 13251 lim supclsp 15381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-limsup 15382 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |