Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuplt2 Structured version   Visualization version   GIF version

Theorem limsuplt2 45751
Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsuplt2.1 (𝜑𝐵 ⊆ ℝ)
limsuplt2.2 (𝜑𝐹:𝐵⟶ℝ*)
limsuplt2.3 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
limsuplt2 (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem limsuplt2
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsuplt2.1 . . 3 (𝜑𝐵 ⊆ ℝ)
2 limsuplt2.2 . . 3 (𝜑𝐹:𝐵⟶ℝ*)
3 limsuplt2.3 . . 3 (𝜑𝐴 ∈ ℝ*)
4 eqid 2729 . . . 4 (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))
54limsuplt 15445 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴))
61, 2, 3, 5syl3anc 1373 . 2 (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴))
7 oveq1 7394 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗[,)+∞) = (𝑖[,)+∞))
87imaeq2d 6031 . . . . . . 7 (𝑗 = 𝑖 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑖[,)+∞)))
98ineq1d 4182 . . . . . 6 (𝑗 = 𝑖 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*))
109supeq1d 9397 . . . . 5 (𝑗 = 𝑖 → sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
11 simpr 484 . . . . 5 ((𝜑𝑖 ∈ ℝ) → 𝑖 ∈ ℝ)
12 xrltso 13101 . . . . . . 7 < Or ℝ*
1312supex 9415 . . . . . 6 sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V
1413a1i 11 . . . . 5 ((𝜑𝑖 ∈ ℝ) → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V)
154, 10, 11, 14fvmptd3 6991 . . . 4 ((𝜑𝑖 ∈ ℝ) → ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) = sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ))
1615breq1d 5117 . . 3 ((𝜑𝑖 ∈ ℝ) → (((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
1716rexbidva 3155 . 2 (𝜑 → (∃𝑖 ∈ ℝ ((𝑗 ∈ ℝ ↦ sup(((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*), ℝ*, < ))‘𝑖) < 𝐴 ↔ ∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
18 oveq1 7394 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖[,)+∞) = (𝑘[,)+∞))
1918imaeq2d 6031 . . . . . . 7 (𝑖 = 𝑘 → (𝐹 “ (𝑖[,)+∞)) = (𝐹 “ (𝑘[,)+∞)))
2019ineq1d 4182 . . . . . 6 (𝑖 = 𝑘 → ((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
2120supeq1d 9397 . . . . 5 (𝑖 = 𝑘 → sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
2221breq1d 5117 . . . 4 (𝑖 = 𝑘 → (sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
2322cbvrexvw 3216 . . 3 (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)
2423a1i 11 . 2 (𝜑 → (∃𝑖 ∈ ℝ sup(((𝐹 “ (𝑖[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
256, 17, 243bitrd 305 1 (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cin 3913  wss 3914   class class class wbr 5107  cmpt 5188  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cr 11067  +∞cpnf 11205  *cxr 11207   < clt 11208  [,)cico 13308  lim supclsp 15436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-limsup 15437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator