Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrextendand Structured version   Visualization version   GIF version

Theorem cgrextendand 36010
Description: Deduction form of cgrextend 36009. (Contributed by Scott Fenton, 14-Oct-2013.)
Hypotheses
Ref Expression
cgrextendand.1 (𝜑𝑁 ∈ ℕ)
cgrextendand.2 (𝜑𝐴 ∈ (𝔼‘𝑁))
cgrextendand.3 (𝜑𝐵 ∈ (𝔼‘𝑁))
cgrextendand.4 (𝜑𝐶 ∈ (𝔼‘𝑁))
cgrextendand.5 (𝜑𝐷 ∈ (𝔼‘𝑁))
cgrextendand.6 (𝜑𝐸 ∈ (𝔼‘𝑁))
cgrextendand.7 (𝜑𝐹 ∈ (𝔼‘𝑁))
cgrextendand.8 ((𝜑𝜓) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
cgrextendand.9 ((𝜑𝜓) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)
cgrextendand.10 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
cgrextendand.11 ((𝜑𝜓) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)
Assertion
Ref Expression
cgrextendand ((𝜑𝜓) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)

Proof of Theorem cgrextendand
StepHypRef Expression
1 cgrextendand.8 . . 3 ((𝜑𝜓) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
2 cgrextendand.9 . . 3 ((𝜑𝜓) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)
31, 2jca 511 . 2 ((𝜑𝜓) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩))
4 cgrextendand.10 . . 3 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
5 cgrextendand.11 . . 3 ((𝜑𝜓) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)
64, 5jca 511 . 2 ((𝜑𝜓) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))
7 cgrextendand.1 . . . 4 (𝜑𝑁 ∈ ℕ)
8 cgrextendand.2 . . . 4 (𝜑𝐴 ∈ (𝔼‘𝑁))
9 cgrextendand.3 . . . 4 (𝜑𝐵 ∈ (𝔼‘𝑁))
10 cgrextendand.4 . . . 4 (𝜑𝐶 ∈ (𝔼‘𝑁))
11 cgrextendand.5 . . . 4 (𝜑𝐷 ∈ (𝔼‘𝑁))
12 cgrextendand.6 . . . 4 (𝜑𝐸 ∈ (𝔼‘𝑁))
13 cgrextendand.7 . . . 4 (𝜑𝐹 ∈ (𝔼‘𝑁))
14 cgrextend 36009 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
157, 8, 9, 10, 11, 12, 13, 14syl133anc 1395 . . 3 (𝜑 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
1615adantr 480 . 2 ((𝜑𝜓) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
173, 6, 16mp2and 699 1 ((𝜑𝜓) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cop 4632   class class class wbr 5143  cfv 6561  cn 12266  𝔼cee 28903   Btwn cbtwn 28904  Cgrccgr 28905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-ee 28906  df-btwn 28907  df-cgr 28908  df-ofs 35984
This theorem is referenced by:  cgrxfr  36056  btwnconn1lem1  36088  btwnconn1lem2  36089  btwnconn1lem3  36090  btwnconn1lem8  36095  btwnconn1lem10  36097
  Copyright terms: Public domain W3C validator