![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cgrextendand | Structured version Visualization version GIF version |
Description: Deduction form of cgrextend 32452. (Contributed by Scott Fenton, 14-Oct-2013.) |
Ref | Expression |
---|---|
cgrextendand.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cgrextendand.2 | ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) |
cgrextendand.3 | ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) |
cgrextendand.4 | ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) |
cgrextendand.5 | ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) |
cgrextendand.6 | ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) |
cgrextendand.7 | ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) |
cgrextendand.8 | ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) |
cgrextendand.9 | ⊢ ((𝜑 ∧ 𝜓) → 𝐸 Btwn 〈𝐷, 𝐹〉) |
cgrextendand.10 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) |
cgrextendand.11 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) |
Ref | Expression |
---|---|
cgrextendand | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgrextendand.8 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) | |
2 | cgrextendand.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐸 Btwn 〈𝐷, 𝐹〉) | |
3 | 1, 2 | jca 501 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉)) |
4 | cgrextendand.10 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) | |
5 | cgrextendand.11 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) | |
6 | 4, 5 | jca 501 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) |
7 | cgrextendand.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | cgrextendand.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) | |
9 | cgrextendand.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) | |
10 | cgrextendand.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) | |
11 | cgrextendand.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) | |
12 | cgrextendand.6 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) | |
13 | cgrextendand.7 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) | |
14 | cgrextend 32452 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) | |
15 | 7, 8, 9, 10, 11, 12, 13, 14 | syl133anc 1499 | . . 3 ⊢ (𝜑 → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
16 | 15 | adantr 466 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
17 | 3, 6, 16 | mp2and 679 | 1 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 〈cop 4322 class class class wbr 4786 ‘cfv 6031 ℕcn 11222 𝔼cee 25989 Btwn cbtwn 25990 Cgrccgr 25991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-ee 25992 df-btwn 25993 df-cgr 25994 df-ofs 32427 |
This theorem is referenced by: cgrxfr 32499 btwnconn1lem1 32531 btwnconn1lem2 32532 btwnconn1lem3 32533 btwnconn1lem8 32538 btwnconn1lem10 32540 |
Copyright terms: Public domain | W3C validator |