Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrextendand Structured version   Visualization version   GIF version

Theorem cgrextendand 34356
Description: Deduction form of cgrextend 34355. (Contributed by Scott Fenton, 14-Oct-2013.)
Hypotheses
Ref Expression
cgrextendand.1 (𝜑𝑁 ∈ ℕ)
cgrextendand.2 (𝜑𝐴 ∈ (𝔼‘𝑁))
cgrextendand.3 (𝜑𝐵 ∈ (𝔼‘𝑁))
cgrextendand.4 (𝜑𝐶 ∈ (𝔼‘𝑁))
cgrextendand.5 (𝜑𝐷 ∈ (𝔼‘𝑁))
cgrextendand.6 (𝜑𝐸 ∈ (𝔼‘𝑁))
cgrextendand.7 (𝜑𝐹 ∈ (𝔼‘𝑁))
cgrextendand.8 ((𝜑𝜓) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
cgrextendand.9 ((𝜑𝜓) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)
cgrextendand.10 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
cgrextendand.11 ((𝜑𝜓) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)
Assertion
Ref Expression
cgrextendand ((𝜑𝜓) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)

Proof of Theorem cgrextendand
StepHypRef Expression
1 cgrextendand.8 . . 3 ((𝜑𝜓) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
2 cgrextendand.9 . . 3 ((𝜑𝜓) → 𝐸 Btwn ⟨𝐷, 𝐹⟩)
31, 2jca 513 . 2 ((𝜑𝜓) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩))
4 cgrextendand.10 . . 3 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩)
5 cgrextendand.11 . . 3 ((𝜑𝜓) → ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)
64, 5jca 513 . 2 ((𝜑𝜓) → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))
7 cgrextendand.1 . . . 4 (𝜑𝑁 ∈ ℕ)
8 cgrextendand.2 . . . 4 (𝜑𝐴 ∈ (𝔼‘𝑁))
9 cgrextendand.3 . . . 4 (𝜑𝐵 ∈ (𝔼‘𝑁))
10 cgrextendand.4 . . . 4 (𝜑𝐶 ∈ (𝔼‘𝑁))
11 cgrextendand.5 . . . 4 (𝜑𝐷 ∈ (𝔼‘𝑁))
12 cgrextendand.6 . . . 4 (𝜑𝐸 ∈ (𝔼‘𝑁))
13 cgrextendand.7 . . . 4 (𝜑𝐹 ∈ (𝔼‘𝑁))
14 cgrextend 34355 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
157, 8, 9, 10, 11, 12, 13, 14syl133anc 1393 . . 3 (𝜑 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
1615adantr 482 . 2 ((𝜑𝜓) → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
173, 6, 16mp2and 697 1 ((𝜑𝜓) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  cop 4571   class class class wbr 5081  cfv 6458  cn 12019  𝔼cee 27301   Btwn cbtwn 27302  Cgrccgr 27303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-clim 15242  df-sum 15443  df-ee 27304  df-btwn 27305  df-cgr 27306  df-ofs 34330
This theorem is referenced by:  cgrxfr  34402  btwnconn1lem1  34434  btwnconn1lem2  34435  btwnconn1lem3  34436  btwnconn1lem8  34441  btwnconn1lem10  34443
  Copyright terms: Public domain W3C validator