| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cgrextendand | Structured version Visualization version GIF version | ||
| Description: Deduction form of cgrextend 36021. (Contributed by Scott Fenton, 14-Oct-2013.) |
| Ref | Expression |
|---|---|
| cgrextendand.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| cgrextendand.2 | ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) |
| cgrextendand.3 | ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) |
| cgrextendand.4 | ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) |
| cgrextendand.5 | ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) |
| cgrextendand.6 | ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) |
| cgrextendand.7 | ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) |
| cgrextendand.8 | ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) |
| cgrextendand.9 | ⊢ ((𝜑 ∧ 𝜓) → 𝐸 Btwn 〈𝐷, 𝐹〉) |
| cgrextendand.10 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) |
| cgrextendand.11 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) |
| Ref | Expression |
|---|---|
| cgrextendand | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgrextendand.8 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) | |
| 2 | cgrextendand.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐸 Btwn 〈𝐷, 𝐹〉) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉)) |
| 4 | cgrextendand.10 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) | |
| 5 | cgrextendand.11 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) | |
| 6 | 4, 5 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) |
| 7 | cgrextendand.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | cgrextendand.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) | |
| 9 | cgrextendand.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) | |
| 10 | cgrextendand.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) | |
| 11 | cgrextendand.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) | |
| 12 | cgrextendand.6 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) | |
| 13 | cgrextendand.7 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) | |
| 14 | cgrextend 36021 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) | |
| 15 | 7, 8, 9, 10, 11, 12, 13, 14 | syl133anc 1395 | . . 3 ⊢ (𝜑 → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
| 16 | 15 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) |
| 17 | 3, 6, 16 | mp2and 699 | 1 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 ‘cfv 6477 ℕcn 12117 𝔼cee 28859 Btwn cbtwn 28860 Cgrccgr 28861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 df-ee 28862 df-btwn 28863 df-cgr 28864 df-ofs 35996 |
| This theorem is referenced by: cgrxfr 36068 btwnconn1lem1 36100 btwnconn1lem2 36101 btwnconn1lem3 36102 btwnconn1lem8 36107 btwnconn1lem10 36109 |
| Copyright terms: Public domain | W3C validator |