Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrtr4d Structured version   Visualization version   GIF version

Theorem cgrtr4d 36003
Description: Deduction form of axcgrtr 28894. (Contributed by Scott Fenton, 13-Oct-2013.)
Hypotheses
Ref Expression
cgrtr4d.1 (𝜑𝑁 ∈ ℕ)
cgrtr4d.2 (𝜑𝐴 ∈ (𝔼‘𝑁))
cgrtr4d.3 (𝜑𝐵 ∈ (𝔼‘𝑁))
cgrtr4d.4 (𝜑𝐶 ∈ (𝔼‘𝑁))
cgrtr4d.5 (𝜑𝐷 ∈ (𝔼‘𝑁))
cgrtr4d.6 (𝜑𝐸 ∈ (𝔼‘𝑁))
cgrtr4d.7 (𝜑𝐹 ∈ (𝔼‘𝑁))
cgrtr4d.8 (𝜑 → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
cgrtr4d.9 (𝜑 → ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩)
Assertion
Ref Expression
cgrtr4d (𝜑 → ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝐹⟩)

Proof of Theorem cgrtr4d
StepHypRef Expression
1 cgrtr4d.8 . 2 (𝜑 → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
2 cgrtr4d.9 . 2 (𝜑 → ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩)
3 cgrtr4d.1 . . 3 (𝜑𝑁 ∈ ℕ)
4 cgrtr4d.2 . . 3 (𝜑𝐴 ∈ (𝔼‘𝑁))
5 cgrtr4d.3 . . 3 (𝜑𝐵 ∈ (𝔼‘𝑁))
6 cgrtr4d.4 . . 3 (𝜑𝐶 ∈ (𝔼‘𝑁))
7 cgrtr4d.5 . . 3 (𝜑𝐷 ∈ (𝔼‘𝑁))
8 cgrtr4d.6 . . 3 (𝜑𝐸 ∈ (𝔼‘𝑁))
9 cgrtr4d.7 . . 3 (𝜑𝐹 ∈ (𝔼‘𝑁))
10 axcgrtr 28894 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩) → ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝐹⟩))
113, 4, 5, 6, 7, 8, 9, 10syl133anc 1395 . 2 (𝜑 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩) → ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝐹⟩))
121, 2, 11mp2and 699 1 (𝜑 → ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cop 4607   class class class wbr 5119  cfv 6531  cn 12240  𝔼cee 28867  Cgrccgr 28869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-sum 15703  df-ee 28870  df-cgr 28872
This theorem is referenced by:  cgrtr4and  36004  cgrrflx  36005  segconeq  36028
  Copyright terms: Public domain W3C validator