Proof of Theorem cdlemg9
Step | Hyp | Ref
| Expression |
1 | | cdlemg8.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
2 | | cdlemg8.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
3 | | cdlemg8.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
4 | | cdlemg8.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | cdlemg8.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdlemg8.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
7 | 1, 2, 3, 4, 5, 6 | cdlemg9b 38643 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) |
8 | | simp1l 1196 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
9 | | simp21l 1289 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
10 | | simp1 1135 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | | simp23 1207 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝑇) |
12 | | simp31 1208 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → 𝐺 ∈ 𝑇) |
13 | 1, 4, 5, 6 | ltrncoat 38154 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) |
14 | 10, 11, 12, 9, 13 | syl121anc 1374 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) |
15 | 1, 4, 5, 6 | ltrnat 38150 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
16 | 10, 12, 9, 15 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐺‘𝑃) ∈ 𝐴) |
17 | | simp22l 1291 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
18 | 1, 4, 5, 6 | ltrncoat 38154 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑄 ∈ 𝐴) → (𝐹‘(𝐺‘𝑄)) ∈ 𝐴) |
19 | 10, 11, 12, 17, 18 | syl121anc 1374 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐹‘(𝐺‘𝑄)) ∈ 𝐴) |
20 | 1, 4, 5, 6 | ltrnat 38150 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐺‘𝑄) ∈ 𝐴) |
21 | 10, 12, 17, 20 | syl3anc 1370 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐺‘𝑄) ∈ 𝐴) |
22 | 1, 2, 3, 4 | dalaw 37896 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑃)) ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑄)) ∈ 𝐴 ∧ (𝐺‘𝑄) ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((((𝐹‘(𝐺‘𝑃)) ∨ (𝐺‘𝑃)) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ (𝐺‘𝑄))) ∨ (((𝐺‘𝑃) ∨ 𝑃) ∧ ((𝐺‘𝑄) ∨ 𝑄))))) |
23 | 8, 9, 14, 16, 17, 19, 21, 22 | syl133anc 1392 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (((𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((((𝐹‘(𝐺‘𝑃)) ∨ (𝐺‘𝑃)) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ (𝐺‘𝑄))) ∨ (((𝐺‘𝑃) ∨ 𝑃) ∧ ((𝐺‘𝑄) ∨ 𝑄))))) |
24 | 7, 23 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ≤ ((((𝐹‘(𝐺‘𝑃)) ∨ (𝐺‘𝑃)) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ (𝐺‘𝑄))) ∨ (((𝐺‘𝑃) ∨ 𝑃) ∧ ((𝐺‘𝑄) ∨ 𝑄)))) |