| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme41sn4aw | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(r) is for on and off 𝑃 ∨ 𝑄 line. TODO: FIX COMMENT. (Contributed by NM, 19-Mar-2013.) |
| Ref | Expression |
|---|---|
| cdleme41.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdleme41.l | ⊢ ≤ = (le‘𝐾) |
| cdleme41.j | ⊢ ∨ = (join‘𝐾) |
| cdleme41.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme41.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme41.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme41.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme41.d | ⊢ 𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
| cdleme41.e | ⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| cdleme41.g | ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdleme41.i | ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
| cdleme41.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
| Ref | Expression |
|---|---|
| cdleme41sn4aw | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → ⦋𝑅 / 𝑠⦌𝑁 ≠ ⦋𝑆 / 𝑠⦌𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | |
| 2 | simp21 1207 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → 𝑃 ≠ 𝑄) | |
| 3 | simp23 1209 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) | |
| 4 | simp22 1208 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | |
| 5 | simp32 1211 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → 𝑆 ≤ (𝑃 ∨ 𝑄)) | |
| 6 | simp31 1210 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) | |
| 7 | simp33 1212 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → 𝑅 ≠ 𝑆) | |
| 8 | 7 | necomd 2987 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → 𝑆 ≠ 𝑅) |
| 9 | cdleme41.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | cdleme41.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 11 | cdleme41.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 12 | cdleme41.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 13 | cdleme41.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 14 | cdleme41.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 15 | cdleme41.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 16 | cdleme41.d | . . . 4 ⊢ 𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
| 17 | cdleme41.e | . . . 4 ⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
| 18 | cdleme41.g | . . . 4 ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 19 | cdleme41.i | . . . 4 ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) | |
| 20 | cdleme41.n | . . . 4 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) | |
| 21 | 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdleme41sn3aw 40439 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≠ 𝑅)) → ⦋𝑆 / 𝑠⦌𝑁 ≠ ⦋𝑅 / 𝑠⦌𝑁) |
| 22 | 1, 2, 3, 4, 5, 6, 8, 21 | syl133anc 1395 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → ⦋𝑆 / 𝑠⦌𝑁 ≠ ⦋𝑅 / 𝑠⦌𝑁) |
| 23 | 22 | necomd 2987 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑆)) → ⦋𝑅 / 𝑠⦌𝑁 ≠ ⦋𝑆 / 𝑠⦌𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ⦋csb 3874 ifcif 4500 class class class wbr 5119 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 Basecbs 17226 lecple 17276 joincjn 18321 meetcmee 18322 Atomscatm 39227 HLchlt 39314 LHypclh 39949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-riotaBAD 38917 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-undef 8270 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-llines 39463 df-lplanes 39464 df-lvols 39465 df-lines 39466 df-psubsp 39468 df-pmap 39469 df-padd 39761 df-lhyp 39953 |
| This theorem is referenced by: cdleme41snaw 40441 |
| Copyright terms: Public domain | W3C validator |