Proof of Theorem 2llnma1b
| Step | Hyp | Ref
| Expression |
| 1 | | hllat 39386 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 2 | 1 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝐾 ∈ Lat) |
| 3 | | simp22 1208 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ∈ 𝐴) |
| 4 | | 2llnma1b.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 5 | | 2llnma1b.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | 4, 5 | atbase 39312 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ∈ 𝐵) |
| 8 | | simp21 1207 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑋 ∈ 𝐵) |
| 9 | | 2llnma1b.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 10 | | 2llnma1b.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 11 | 4, 9, 10 | latlej1 18463 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ 𝑋)) |
| 12 | 2, 7, 8, 11 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ (𝑃 ∨ 𝑋)) |
| 13 | | simp23 1209 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑄 ∈ 𝐴) |
| 14 | 4, 5 | atbase 39312 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 15 | 13, 14 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑄 ∈ 𝐵) |
| 16 | 4, 9, 10 | latlej1 18463 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 17 | 2, 7, 15, 16 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 18 | 4, 10 | latjcl 18454 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) ∈ 𝐵) |
| 19 | 2, 7, 8, 18 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ∨ 𝑋) ∈ 𝐵) |
| 20 | | simp1 1136 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝐾 ∈ HL) |
| 21 | 4, 10, 5 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 22 | 20, 3, 13, 21 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 23 | | 2llnma1b.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 24 | 4, 9, 23 | latlem12 18481 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵)) → ((𝑃 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
| 25 | 2, 7, 19, 22, 24 | syl13anc 1374 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
| 26 | 12, 17, 25 | mpbi2and 712 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄))) |
| 27 | | hlatl 39383 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 28 | 27 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝐾 ∈ AtLat) |
| 29 | | simp3 1138 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) |
| 30 | | nbrne2 5144 |
. . . . . 6
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑋) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≠ 𝑄) |
| 31 | 12, 29, 30 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≠ 𝑄) |
| 32 | 4, 10 | latjcl 18454 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → ((𝑃 ∨ 𝑋) ∨ 𝑄) ∈ 𝐵) |
| 33 | 2, 19, 15, 32 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∨ 𝑄) ∈ 𝐵) |
| 34 | 4, 9, 10 | latlej1 18463 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑋) ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) |
| 35 | 2, 19, 15, 34 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ∨ 𝑋) ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) |
| 36 | 4, 9, 2, 7, 19, 33, 12, 35 | lattrd 18461 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) |
| 37 | 4, 9, 10, 23, 5 | cvrat3 39466 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |
| 38 | 37 | 3impia 1117 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄))) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
| 39 | 20, 19, 3, 13, 31, 29, 36, 38 | syl133anc 1395 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
| 40 | 9, 5 | atcmp 39334 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) → (𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ↔ 𝑃 = ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
| 41 | 28, 3, 39, 40 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ↔ 𝑃 = ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
| 42 | 26, 41 | mpbid 232 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 = ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄))) |
| 43 | 42 | eqcomd 2742 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) = 𝑃) |