Proof of Theorem 2llnma1b
Step | Hyp | Ref
| Expression |
1 | | hllat 36974 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
2 | 1 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝐾 ∈ Lat) |
3 | | simp22 1204 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ∈ 𝐴) |
4 | | 2llnma1b.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
5 | | 2llnma1b.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 36900 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 3, 6 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ∈ 𝐵) |
8 | | simp21 1203 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑋 ∈ 𝐵) |
9 | | 2llnma1b.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
10 | | 2llnma1b.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
11 | 4, 9, 10 | latlej1 17750 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ 𝑋)) |
12 | 2, 7, 8, 11 | syl3anc 1368 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ (𝑃 ∨ 𝑋)) |
13 | | simp23 1205 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑄 ∈ 𝐴) |
14 | 4, 5 | atbase 36900 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑄 ∈ 𝐵) |
16 | 4, 9, 10 | latlej1 17750 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
17 | 2, 7, 15, 16 | syl3anc 1368 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
18 | 4, 10 | latjcl 17741 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) ∈ 𝐵) |
19 | 2, 7, 8, 18 | syl3anc 1368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ∨ 𝑋) ∈ 𝐵) |
20 | | simp1 1133 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝐾 ∈ HL) |
21 | 4, 10, 5 | hlatjcl 36978 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
22 | 20, 3, 13, 21 | syl3anc 1368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
23 | | 2llnma1b.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
24 | 4, 9, 23 | latlem12 17768 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵)) → ((𝑃 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
25 | 2, 7, 19, 22, 24 | syl13anc 1369 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) ↔ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
26 | 12, 17, 25 | mpbi2and 711 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄))) |
27 | | hlatl 36971 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
28 | 27 | 3ad2ant1 1130 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝐾 ∈ AtLat) |
29 | | simp3 1135 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) |
30 | | nbrne2 5056 |
. . . . . 6
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑋) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≠ 𝑄) |
31 | 12, 29, 30 | syl2anc 587 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≠ 𝑄) |
32 | 4, 10 | latjcl 17741 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → ((𝑃 ∨ 𝑋) ∨ 𝑄) ∈ 𝐵) |
33 | 2, 19, 15, 32 | syl3anc 1368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∨ 𝑄) ∈ 𝐵) |
34 | 4, 9, 10 | latlej1 17750 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑋) ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) |
35 | 2, 19, 15, 34 | syl3anc 1368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ∨ 𝑋) ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) |
36 | 4, 9, 2, 7, 19, 33, 12, 35 | lattrd 17748 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) |
37 | 4, 9, 10, 23, 5 | cvrat3 37053 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |
38 | 37 | 3impia 1114 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑋) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋) ∧ 𝑃 ≤ ((𝑃 ∨ 𝑋) ∨ 𝑄))) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
39 | 20, 19, 3, 13, 31, 29, 36, 38 | syl133anc 1390 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
40 | 9, 5 | atcmp 36922 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) → (𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ↔ 𝑃 = ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
41 | 28, 3, 39, 40 | syl3anc 1368 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → (𝑃 ≤ ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) ↔ 𝑃 = ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)))) |
42 | 26, 41 | mpbid 235 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → 𝑃 = ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄))) |
43 | 42 | eqcomd 2764 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑋)) → ((𝑃 ∨ 𝑋) ∧ (𝑃 ∨ 𝑄)) = 𝑃) |