Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma1b Structured version   Visualization version   GIF version

Theorem 2llnma1b 37727
Description: Generalization of 2llnma1 37728. (Contributed by NM, 26-Apr-2013.)
Hypotheses
Ref Expression
2llnma1b.b 𝐵 = (Base‘𝐾)
2llnma1b.l = (le‘𝐾)
2llnma1b.j = (join‘𝐾)
2llnma1b.m = (meet‘𝐾)
2llnma1b.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2llnma1b ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → ((𝑃 𝑋) (𝑃 𝑄)) = 𝑃)

Proof of Theorem 2llnma1b
StepHypRef Expression
1 hllat 37304 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1131 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝐾 ∈ Lat)
3 simp22 1205 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃𝐴)
4 2llnma1b.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 2llnma1b.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 37230 . . . . . 6 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃𝐵)
8 simp21 1204 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑋𝐵)
9 2llnma1b.l . . . . . 6 = (le‘𝐾)
10 2llnma1b.j . . . . . 6 = (join‘𝐾)
114, 9, 10latlej1 18081 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → 𝑃 (𝑃 𝑋))
122, 7, 8, 11syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃 (𝑃 𝑋))
13 simp23 1206 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑄𝐴)
144, 5atbase 37230 . . . . . 6 (𝑄𝐴𝑄𝐵)
1513, 14syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑄𝐵)
164, 9, 10latlej1 18081 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → 𝑃 (𝑃 𝑄))
172, 7, 15, 16syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃 (𝑃 𝑄))
184, 10latjcl 18072 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
192, 7, 8, 18syl3anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → (𝑃 𝑋) ∈ 𝐵)
20 simp1 1134 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝐾 ∈ HL)
214, 10, 5hlatjcl 37308 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
2220, 3, 13, 21syl3anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → (𝑃 𝑄) ∈ 𝐵)
23 2llnma1b.m . . . . . 6 = (meet‘𝐾)
244, 9, 23latlem12 18099 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑃 𝑋) ∈ 𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑃 (𝑃 𝑋) ∧ 𝑃 (𝑃 𝑄)) ↔ 𝑃 ((𝑃 𝑋) (𝑃 𝑄))))
252, 7, 19, 22, 24syl13anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → ((𝑃 (𝑃 𝑋) ∧ 𝑃 (𝑃 𝑄)) ↔ 𝑃 ((𝑃 𝑋) (𝑃 𝑄))))
2612, 17, 25mpbi2and 708 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃 ((𝑃 𝑋) (𝑃 𝑄)))
27 hlatl 37301 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
28273ad2ant1 1131 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝐾 ∈ AtLat)
29 simp3 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → ¬ 𝑄 (𝑃 𝑋))
30 nbrne2 5090 . . . . . 6 ((𝑃 (𝑃 𝑋) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃𝑄)
3112, 29, 30syl2anc 583 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃𝑄)
324, 10latjcl 18072 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑋) ∈ 𝐵𝑄𝐵) → ((𝑃 𝑋) 𝑄) ∈ 𝐵)
332, 19, 15, 32syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → ((𝑃 𝑋) 𝑄) ∈ 𝐵)
344, 9, 10latlej1 18081 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑋) ∈ 𝐵𝑄𝐵) → (𝑃 𝑋) ((𝑃 𝑋) 𝑄))
352, 19, 15, 34syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → (𝑃 𝑋) ((𝑃 𝑋) 𝑄))
364, 9, 2, 7, 19, 33, 12, 35lattrd 18079 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃 ((𝑃 𝑋) 𝑄))
374, 9, 10, 23, 5cvrat3 37383 . . . . . 6 ((𝐾 ∈ HL ∧ ((𝑃 𝑋) ∈ 𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑋) ∧ 𝑃 ((𝑃 𝑋) 𝑄)) → ((𝑃 𝑋) (𝑃 𝑄)) ∈ 𝐴))
38373impia 1115 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑃 𝑋) ∈ 𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑋) ∧ 𝑃 ((𝑃 𝑋) 𝑄))) → ((𝑃 𝑋) (𝑃 𝑄)) ∈ 𝐴)
3920, 19, 3, 13, 31, 29, 36, 38syl133anc 1391 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → ((𝑃 𝑋) (𝑃 𝑄)) ∈ 𝐴)
409, 5atcmp 37252 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴 ∧ ((𝑃 𝑋) (𝑃 𝑄)) ∈ 𝐴) → (𝑃 ((𝑃 𝑋) (𝑃 𝑄)) ↔ 𝑃 = ((𝑃 𝑋) (𝑃 𝑄))))
4128, 3, 39, 40syl3anc 1369 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → (𝑃 ((𝑃 𝑋) (𝑃 𝑄)) ↔ 𝑃 = ((𝑃 𝑋) (𝑃 𝑄))))
4226, 41mpbid 231 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → 𝑃 = ((𝑃 𝑋) (𝑃 𝑄)))
4342eqcomd 2744 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ ¬ 𝑄 (𝑃 𝑋)) → ((𝑃 𝑋) (𝑃 𝑄)) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  AtLatcal 37205  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  2llnma1  37728  cdlemg4  38558  cdlemkfid1N  38862
  Copyright terms: Public domain W3C validator