Proof of Theorem cdlemg12c
Step | Hyp | Ref
| Expression |
1 | | cdlemg12.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
2 | | cdlemg12.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
3 | | cdlemg12.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
4 | | cdlemg12.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | cdlemg12.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdlemg12.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
7 | | cdlemg12b.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
8 | 1, 2, 3, 4, 5, 6, 7 | cdlemg12b 38585 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄)))) |
9 | | simp1l 1195 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
10 | | simp21l 1288 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
11 | | simp1 1134 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | | simp31 1207 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐺 ∈ 𝑇) |
13 | 1, 4, 5, 6 | ltrnat 38081 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
14 | 11, 12, 10, 13 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑃) ∈ 𝐴) |
15 | | simp23 1206 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝑇) |
16 | 1, 4, 5, 6 | ltrnat 38081 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝐺‘𝑃) ∈ 𝐴) → (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) |
17 | 11, 15, 14, 16 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) |
18 | | simp22l 1290 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
19 | 1, 4, 5, 6 | ltrnat 38081 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐺‘𝑄) ∈ 𝐴) |
20 | 11, 12, 18, 19 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑄) ∈ 𝐴) |
21 | 1, 4, 5, 6 | ltrncoat 38085 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑄 ∈ 𝐴) → (𝐹‘(𝐺‘𝑄)) ∈ 𝐴) |
22 | 11, 15, 12, 18, 21 | syl121anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐹‘(𝐺‘𝑄)) ∈ 𝐴) |
23 | 1, 2, 3, 4 | dalaw 37827 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (𝐺‘𝑄) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑄)) ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ (𝑄 ∨ (𝐺‘𝑄))) ≤ ((((𝐺‘𝑃) ∨ (𝐹‘(𝐺‘𝑃))) ∧ ((𝐺‘𝑄) ∨ (𝐹‘(𝐺‘𝑄)))) ∨ (((𝐹‘(𝐺‘𝑃)) ∨ 𝑃) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ 𝑄))))) |
24 | 9, 10, 14, 17, 18, 20, 22, 23 | syl133anc 1391 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (((𝑃 ∨ 𝑄) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ (𝑄 ∨ (𝐺‘𝑄))) ≤ ((((𝐺‘𝑃) ∨ (𝐹‘(𝐺‘𝑃))) ∧ ((𝐺‘𝑄) ∨ (𝐹‘(𝐺‘𝑄)))) ∨ (((𝐹‘(𝐺‘𝑃)) ∨ 𝑃) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ 𝑄))))) |
25 | 8, 24 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ (𝑄 ∨ (𝐺‘𝑄))) ≤ ((((𝐺‘𝑃) ∨ (𝐹‘(𝐺‘𝑃))) ∧ ((𝐺‘𝑄) ∨ (𝐹‘(𝐺‘𝑄)))) ∨ (((𝐹‘(𝐺‘𝑃)) ∨ 𝑃) ∧ ((𝐹‘(𝐺‘𝑄)) ∨ 𝑄)))) |