Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12c Structured version   Visualization version   GIF version

Theorem cdlemg12c 39819
Description: The triples βŸ¨π‘ƒ, (πΉβ€˜π‘ƒ), (πΉβ€˜(πΊβ€˜π‘ƒ))⟩ and βŸ¨π‘„, (πΉβ€˜π‘„), (πΉβ€˜(πΊβ€˜π‘„))⟩ are axially perspective by dalaw 39060. TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg12c (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΊβ€˜π‘„))) ≀ ((((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ ((πΊβ€˜π‘„) ∨ (πΉβ€˜(πΊβ€˜π‘„)))) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄))))

Proof of Theorem cdlemg12c
StepHypRef Expression
1 cdlemg12.l . . 3 ≀ = (leβ€˜πΎ)
2 cdlemg12.j . . 3 ∨ = (joinβ€˜πΎ)
3 cdlemg12.m . . 3 ∧ = (meetβ€˜πΎ)
4 cdlemg12.a . . 3 𝐴 = (Atomsβ€˜πΎ)
5 cdlemg12.h . . 3 𝐻 = (LHypβ€˜πΎ)
6 cdlemg12.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
7 cdlemg12b.r . . 3 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7cdlemg12b 39818 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑄) ∧ ((πΊβ€˜π‘ƒ) ∨ (πΊβ€˜π‘„))) ≀ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))))
9 simp1l 1195 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
10 simp21l 1288 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
11 simp1 1134 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
12 simp31 1207 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ 𝐺 ∈ 𝑇)
131, 4, 5, 6ltrnat 39314 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
1411, 12, 10, 13syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ (πΊβ€˜π‘ƒ) ∈ 𝐴)
15 simp23 1206 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 ∈ 𝑇)
161, 4, 5, 6ltrnat 39314 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (πΊβ€˜π‘ƒ) ∈ 𝐴) β†’ (πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴)
1711, 15, 14, 16syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ (πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴)
18 simp22l 1290 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
191, 4, 5, 6ltrnat 39314 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) β†’ (πΊβ€˜π‘„) ∈ 𝐴)
2011, 12, 18, 19syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ (πΊβ€˜π‘„) ∈ 𝐴)
211, 4, 5, 6ltrncoat 39318 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑄 ∈ 𝐴) β†’ (πΉβ€˜(πΊβ€˜π‘„)) ∈ 𝐴)
2211, 15, 12, 18, 21syl121anc 1373 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ (πΉβ€˜(πΊβ€˜π‘„)) ∈ 𝐴)
231, 2, 3, 4dalaw 39060 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (πΊβ€˜π‘ƒ) ∈ 𝐴 ∧ (πΉβ€˜(πΊβ€˜π‘ƒ)) ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (πΊβ€˜π‘„) ∈ 𝐴 ∧ (πΉβ€˜(πΊβ€˜π‘„)) ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∧ ((πΊβ€˜π‘ƒ) ∨ (πΊβ€˜π‘„))) ≀ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β†’ ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΊβ€˜π‘„))) ≀ ((((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ ((πΊβ€˜π‘„) ∨ (πΉβ€˜(πΊβ€˜π‘„)))) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)))))
249, 10, 14, 17, 18, 20, 22, 23syl133anc 1391 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ (((𝑃 ∨ 𝑄) ∧ ((πΊβ€˜π‘ƒ) ∨ (πΊβ€˜π‘„))) ≀ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β†’ ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΊβ€˜π‘„))) ≀ ((((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ ((πΊβ€˜π‘„) ∨ (πΉβ€˜(πΊβ€˜π‘„)))) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)))))
258, 24mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΊβ€˜π‘ƒ)) ∧ (𝑄 ∨ (πΊβ€˜π‘„))) ≀ ((((πΊβ€˜π‘ƒ) ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ ((πΊβ€˜π‘„) ∨ (πΉβ€˜(πΊβ€˜π‘„)))) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  trLctrl 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333
This theorem is referenced by:  cdlemg12d  39820
  Copyright terms: Public domain W3C validator