MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmreg Structured version   Visualization version   GIF version

Theorem nrmreg 22576
Description: A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 22501. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmreg ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg)

Proof of Theorem nrmreg
StepHypRef Expression
1 t1r0 22573 . 2 (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)
2 nrmr0reg 22501 . 2 ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg)
31, 2sylan2 596 1 ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2113  cfv 6340  Frect1 22059  Regcreg 22061  Nrmcnrm 22062  KQckq 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7174  df-oprab 7175  df-mpo 7176  df-1st 7715  df-2nd 7716  df-1o 8132  df-map 8440  df-topgen 16821  df-qtop 16884  df-top 21646  df-topon 21663  df-cld 21771  df-cn 21979  df-t0 22065  df-t1 22066  df-reg 22068  df-nrm 22069  df-kq 22446  df-hmeo 22507  df-hmph 22508
This theorem is referenced by:  nrmhaus  22578  metreg  23616
  Copyright terms: Public domain W3C validator