Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrmreg | Structured version Visualization version GIF version |
Description: A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 22501. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
nrmreg | ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1r0 22573 | . 2 ⊢ (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre) | |
2 | nrmr0reg 22501 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg) | |
3 | 1, 2 | sylan2 596 | 1 ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2113 ‘cfv 6340 Frect1 22059 Regcreg 22061 Nrmcnrm 22062 KQckq 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7174 df-oprab 7175 df-mpo 7176 df-1st 7715 df-2nd 7716 df-1o 8132 df-map 8440 df-topgen 16821 df-qtop 16884 df-top 21646 df-topon 21663 df-cld 21771 df-cn 21979 df-t0 22065 df-t1 22066 df-reg 22068 df-nrm 22069 df-kq 22446 df-hmeo 22507 df-hmph 22508 |
This theorem is referenced by: nrmhaus 22578 metreg 23616 |
Copyright terms: Public domain | W3C validator |