| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrmreg | Structured version Visualization version GIF version | ||
| Description: A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 23670. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| nrmreg | ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1r0 23742 | . 2 ⊢ (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre) | |
| 2 | nrmr0reg 23670 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ‘cfv 6487 Frect1 23228 Regcreg 23230 Nrmcnrm 23231 KQckq 23614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-topgen 17353 df-qtop 17417 df-top 22815 df-topon 22832 df-cld 22940 df-cn 23148 df-t0 23234 df-t1 23235 df-reg 23237 df-nrm 23238 df-kq 23615 df-hmeo 23676 df-hmph 23677 |
| This theorem is referenced by: nrmhaus 23747 metreg 24785 |
| Copyright terms: Public domain | W3C validator |