Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoco2 Structured version   Visualization version   GIF version

Theorem tendoco2 40806
Description: Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoco2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))

Proof of Theorem tendoco2
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝐾 ∈ HL)
2 simp1r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝑊𝐻)
3 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝑈𝐸)
4 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
5 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
6 tendof.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 tendof.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 tendof.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
96, 7, 8tendovalco 40803 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑈𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
101, 2, 3, 4, 5, 9syl32anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈‘(𝐹𝐺)) = ((𝑈𝐹) ∘ (𝑈𝐺)))
11 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → 𝑉𝐸)
126, 7, 8tendovalco 40803 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑉‘(𝐹𝐺)) = ((𝑉𝐹) ∘ (𝑉𝐺)))
131, 2, 11, 4, 5, 12syl32anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑉‘(𝐹𝐺)) = ((𝑉𝐹) ∘ (𝑉𝐺)))
1410, 13coeq12d 5804 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑈𝐺)) ∘ ((𝑉𝐹) ∘ (𝑉𝐺))))
15 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
166, 7, 8tendocl 40805 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
1715, 3, 5, 16syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑈𝐺) ∈ 𝑇)
186, 7, 8tendocl 40805 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝐹𝑇) → (𝑉𝐹) ∈ 𝑇)
1915, 11, 4, 18syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑉𝐹) ∈ 𝑇)
206, 7ltrnco4 40777 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇 ∧ (𝑉𝐹) ∈ 𝑇) → (((𝑈𝐹) ∘ (𝑈𝐺)) ∘ ((𝑉𝐹) ∘ (𝑉𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))
2115, 17, 19, 20syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (((𝑈𝐹) ∘ (𝑈𝐺)) ∘ ((𝑉𝐹) ∘ (𝑉𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))
2214, 21eqtrd 2766 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ccom 5620  cfv 6481  HLchlt 39388  LHypclh 40022  LTrncltrn 40139  TEndoctendo 40790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197  df-tendo 40793
This theorem is referenced by:  tendoplco2  40817
  Copyright terms: Public domain W3C validator