![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocnei | Structured version Visualization version GIF version |
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
dya2iocnei | ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunii 4870 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) | |
2 | 1 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) |
3 | sxbrsiga.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
4 | 3 | tpr2uni 32486 | . . 3 ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
5 | 2, 4 | eleqtrdi 2848 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (ℝ × ℝ)) |
6 | eqid 2736 | . . 3 ⊢ (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) | |
7 | eqid 2736 | . . 3 ⊢ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) | |
8 | 3, 6, 7 | tpr2rico 32493 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) |
9 | anass 469 | . . . . 5 ⊢ (((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) | |
10 | dya2ioc.1 | . . . . . . . . 9 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
11 | dya2ioc.2 | . . . . . . . . 9 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
12 | 3, 10, 11, 7 | dya2iocnrect 32881 | . . . . . . . 8 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
13 | 12 | 3expb 1120 | . . . . . . 7 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
14 | 13 | anim1i 615 | . . . . . 6 ⊢ (((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) ∧ 𝑟 ⊆ 𝐴) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
15 | 14 | anasss 467 | . . . . 5 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ ((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴)) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
16 | 9, 15 | sylan2br 595 | . . . 4 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
17 | r19.41v 3185 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) | |
18 | simpll 765 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑋 ∈ 𝑏) | |
19 | simplr 767 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝑟) | |
20 | simpr 485 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑟 ⊆ 𝐴) | |
21 | 19, 20 | sstrd 3954 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝐴) |
22 | 18, 21 | jca 512 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → (𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
23 | 22 | reximi 3087 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
24 | 17, 23 | sylbir 234 | . . . 4 ⊢ ((∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
25 | 16, 24 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
26 | 25 | rexlimdvaa 3153 | . 2 ⊢ (𝑋 ∈ (ℝ × ℝ) → (∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴))) |
27 | 5, 8, 26 | sylc 65 | 1 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 ⊆ wss 3910 ∪ cuni 4865 × cxp 5631 ran crn 5634 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ℝcr 11050 1c1 11052 ici 11053 + caddc 11054 · cmul 11056 / cdiv 11812 2c2 12208 ℤcz 12499 (,)cioo 13264 [,)cico 13266 ↑cexp 13967 topGenctg 17319 ×t ctx 22911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-refld 21009 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-fcls 23292 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-cfil 24619 df-cmet 24621 df-cms 24699 df-limc 25230 df-dv 25231 df-log 25912 df-cxp 25913 df-logb 26115 |
This theorem is referenced by: dya2iocuni 32883 |
Copyright terms: Public domain | W3C validator |