Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocnei | Structured version Visualization version GIF version |
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
dya2iocnei | ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunii 4841 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) | |
2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) |
3 | sxbrsiga.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
4 | 3 | tpr2uni 31757 | . . 3 ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
5 | 2, 4 | eleqtrdi 2849 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (ℝ × ℝ)) |
6 | eqid 2738 | . . 3 ⊢ (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) | |
7 | eqid 2738 | . . 3 ⊢ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) | |
8 | 3, 6, 7 | tpr2rico 31764 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) |
9 | anass 468 | . . . . 5 ⊢ (((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) | |
10 | dya2ioc.1 | . . . . . . . . 9 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
11 | dya2ioc.2 | . . . . . . . . 9 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
12 | 3, 10, 11, 7 | dya2iocnrect 32148 | . . . . . . . 8 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
13 | 12 | 3expb 1118 | . . . . . . 7 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
14 | 13 | anim1i 614 | . . . . . 6 ⊢ (((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) ∧ 𝑟 ⊆ 𝐴) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
15 | 14 | anasss 466 | . . . . 5 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ ((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴)) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
16 | 9, 15 | sylan2br 594 | . . . 4 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
17 | r19.41v 3273 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) | |
18 | simpll 763 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑋 ∈ 𝑏) | |
19 | simplr 765 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝑟) | |
20 | simpr 484 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑟 ⊆ 𝐴) | |
21 | 19, 20 | sstrd 3927 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝐴) |
22 | 18, 21 | jca 511 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → (𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
23 | 22 | reximi 3174 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
24 | 17, 23 | sylbir 234 | . . . 4 ⊢ ((∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
25 | 16, 24 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
26 | 25 | rexlimdvaa 3213 | . 2 ⊢ (𝑋 ∈ (ℝ × ℝ) → (∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴))) |
27 | 5, 8, 26 | sylc 65 | 1 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ∪ cuni 4836 × cxp 5578 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℝcr 10801 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 / cdiv 11562 2c2 11958 ℤcz 12249 (,)cioo 13008 [,)cico 13010 ↑cexp 13710 topGenctg 17065 ×t ctx 22619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-refld 20722 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-fcls 23000 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-cfil 24324 df-cmet 24326 df-cms 24404 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-logb 25820 |
This theorem is referenced by: dya2iocuni 32150 |
Copyright terms: Public domain | W3C validator |