Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocnei Structured version   Visualization version   GIF version

Theorem dya2iocnei 31429
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocnei ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑏,𝑣,𝑥   𝐴,𝑏   𝑅,𝑏   𝑋,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑢,𝑛)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛,𝑏)   𝐽(𝑥,𝑣,𝑢,𝑛,𝑏)   𝑋(𝑣,𝑢,𝑛)

Proof of Theorem dya2iocnei
Dummy variables 𝑒 𝑓 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunii 4842 . . . 4 ((𝑋𝐴𝐴 ∈ (𝐽 ×t 𝐽)) → 𝑋 (𝐽 ×t 𝐽))
21ancoms 459 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 (𝐽 ×t 𝐽))
3 sxbrsiga.0 . . . 4 𝐽 = (topGen‘ran (,))
43tpr2uni 31037 . . 3 (𝐽 ×t 𝐽) = (ℝ × ℝ)
52, 4syl6eleq 2928 . 2 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
6 eqid 2826 . . 3 (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣)))
7 eqid 2826 . . 3 ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
83, 6, 7tpr2rico 31044 . 2 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋𝑟𝑟𝐴))
9 anass 469 . . . . 5 (((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋𝑟) ∧ 𝑟𝐴) ↔ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋𝑟𝑟𝐴)))
10 dya2ioc.1 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
11 dya2ioc.2 . . . . . . . . 9 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
123, 10, 11, 7dya2iocnrect 31428 . . . . . . . 8 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋𝑟) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝑟))
13123expb 1114 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋𝑟)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝑟))
1413anim1i 614 . . . . . 6 (((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋𝑟)) ∧ 𝑟𝐴) → (∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴))
1514anasss 467 . . . . 5 ((𝑋 ∈ (ℝ × ℝ) ∧ ((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋𝑟) ∧ 𝑟𝐴)) → (∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴))
169, 15sylan2br 594 . . . 4 ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋𝑟𝑟𝐴))) → (∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴))
17 r19.41v 3352 . . . . 5 (∃𝑏 ∈ ran 𝑅((𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) ↔ (∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴))
18 simpll 763 . . . . . . 7 (((𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) → 𝑋𝑏)
19 simplr 765 . . . . . . . 8 (((𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) → 𝑏𝑟)
20 simpr 485 . . . . . . . 8 (((𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) → 𝑟𝐴)
2119, 20sstrd 3981 . . . . . . 7 (((𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) → 𝑏𝐴)
2218, 21jca 512 . . . . . 6 (((𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) → (𝑋𝑏𝑏𝐴))
2322reximi 3248 . . . . 5 (∃𝑏 ∈ ran 𝑅((𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
2417, 23sylbir 236 . . . 4 ((∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝑟) ∧ 𝑟𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
2516, 24syl 17 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋𝑟𝑟𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
2625rexlimdvaa 3290 . 2 (𝑋 ∈ (ℝ × ℝ) → (∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋𝑟𝑟𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
275, 8, 26sylc 65 1 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wrex 3144  wss 3940   cuni 4837   × cxp 5552  ran crn 5555  cfv 6352  (class class class)co 7148  cmpo 7150  cr 10525  1c1 10527  ici 10528   + caddc 10529   · cmul 10531   / cdiv 11286  2c2 11681  cz 11970  (,)cioo 12728  [,)cico 12730  cexp 13419  topGenctg 16701   ×t ctx 22087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-fbas 20461  df-fg 20462  df-cnfld 20465  df-refld 20668  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-lp 21663  df-perf 21664  df-cn 21754  df-cnp 21755  df-haus 21842  df-cmp 21914  df-tx 22089  df-hmeo 22282  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-fcls 22468  df-xms 22848  df-ms 22849  df-tms 22850  df-cncf 23404  df-cfil 23776  df-cmet 23778  df-cms 23856  df-limc 24382  df-dv 24383  df-log 25056  df-cxp 25057  df-logb 25259
This theorem is referenced by:  dya2iocuni  31430
  Copyright terms: Public domain W3C validator