![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocnei | Structured version Visualization version GIF version |
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
dya2iocnei | ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunii 4916 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) | |
2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) |
3 | sxbrsiga.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
4 | 3 | tpr2uni 33865 | . . 3 ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
5 | 2, 4 | eleqtrdi 2848 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (ℝ × ℝ)) |
6 | eqid 2734 | . . 3 ⊢ (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) | |
7 | eqid 2734 | . . 3 ⊢ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) | |
8 | 3, 6, 7 | tpr2rico 33872 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) |
9 | anass 468 | . . . . 5 ⊢ (((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) | |
10 | dya2ioc.1 | . . . . . . . . 9 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
11 | dya2ioc.2 | . . . . . . . . 9 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
12 | 3, 10, 11, 7 | dya2iocnrect 34262 | . . . . . . . 8 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
13 | 12 | 3expb 1119 | . . . . . . 7 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
14 | 13 | anim1i 615 | . . . . . 6 ⊢ (((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) ∧ 𝑟 ⊆ 𝐴) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
15 | 14 | anasss 466 | . . . . 5 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ ((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴)) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
16 | 9, 15 | sylan2br 595 | . . . 4 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
17 | r19.41v 3186 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) | |
18 | simpll 767 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑋 ∈ 𝑏) | |
19 | simplr 769 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝑟) | |
20 | simpr 484 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑟 ⊆ 𝐴) | |
21 | 19, 20 | sstrd 4005 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝐴) |
22 | 18, 21 | jca 511 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → (𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
23 | 22 | reximi 3081 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
24 | 17, 23 | sylbir 235 | . . . 4 ⊢ ((∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
25 | 16, 24 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
26 | 25 | rexlimdvaa 3153 | . 2 ⊢ (𝑋 ∈ (ℝ × ℝ) → (∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴))) |
27 | 5, 8, 26 | sylc 65 | 1 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 ∪ cuni 4911 × cxp 5686 ran crn 5689 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 ℝcr 11151 1c1 11153 ici 11154 + caddc 11155 · cmul 11157 / cdiv 11917 2c2 12318 ℤcz 12610 (,)cioo 13383 [,)cico 13385 ↑cexp 14098 topGenctg 17483 ×t ctx 23583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ioc 13388 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-bc 14338 df-hash 14366 df-shft 15102 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-limsup 15503 df-clim 15520 df-rlim 15521 df-sum 15719 df-ef 16099 df-sin 16101 df-cos 16102 df-pi 16104 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-refld 21640 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-lp 23159 df-perf 23160 df-cn 23250 df-cnp 23251 df-haus 23338 df-cmp 23410 df-tx 23585 df-hmeo 23778 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-fcls 23964 df-xms 24345 df-ms 24346 df-tms 24347 df-cncf 24917 df-cfil 25302 df-cmet 25304 df-cms 25382 df-limc 25915 df-dv 25916 df-log 26612 df-cxp 26613 df-logb 26822 |
This theorem is referenced by: dya2iocuni 34264 |
Copyright terms: Public domain | W3C validator |