![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocnei | Structured version Visualization version GIF version |
Description: For any point of an open set of the usual topology on (β Γ β) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | β’ π½ = (topGenβran (,)) |
dya2ioc.1 | β’ πΌ = (π₯ β β€, π β β€ β¦ ((π₯ / (2βπ))[,)((π₯ + 1) / (2βπ)))) |
dya2ioc.2 | β’ π = (π’ β ran πΌ, π£ β ran πΌ β¦ (π’ Γ π£)) |
Ref | Expression |
---|---|
dya2iocnei | β’ ((π΄ β (π½ Γt π½) β§ π β π΄) β βπ β ran π (π β π β§ π β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunii 4912 | . . . 4 β’ ((π β π΄ β§ π΄ β (π½ Γt π½)) β π β βͺ (π½ Γt π½)) | |
2 | 1 | ancoms 459 | . . 3 β’ ((π΄ β (π½ Γt π½) β§ π β π΄) β π β βͺ (π½ Γt π½)) |
3 | sxbrsiga.0 | . . . 4 β’ π½ = (topGenβran (,)) | |
4 | 3 | tpr2uni 32873 | . . 3 β’ βͺ (π½ Γt π½) = (β Γ β) |
5 | 2, 4 | eleqtrdi 2843 | . 2 β’ ((π΄ β (π½ Γt π½) β§ π β π΄) β π β (β Γ β)) |
6 | eqid 2732 | . . 3 β’ (π’ β β, π£ β β β¦ (π’ + (i Β· π£))) = (π’ β β, π£ β β β¦ (π’ + (i Β· π£))) | |
7 | eqid 2732 | . . 3 β’ ran (π β ran (,), π β ran (,) β¦ (π Γ π)) = ran (π β ran (,), π β ran (,) β¦ (π Γ π)) | |
8 | 3, 6, 7 | tpr2rico 32880 | . 2 β’ ((π΄ β (π½ Γt π½) β§ π β π΄) β βπ β ran (π β ran (,), π β ran (,) β¦ (π Γ π))(π β π β§ π β π΄)) |
9 | anass 469 | . . . . 5 β’ (((π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ π β π) β§ π β π΄) β (π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ (π β π β§ π β π΄))) | |
10 | dya2ioc.1 | . . . . . . . . 9 β’ πΌ = (π₯ β β€, π β β€ β¦ ((π₯ / (2βπ))[,)((π₯ + 1) / (2βπ)))) | |
11 | dya2ioc.2 | . . . . . . . . 9 β’ π = (π’ β ran πΌ, π£ β ran πΌ β¦ (π’ Γ π£)) | |
12 | 3, 10, 11, 7 | dya2iocnrect 33268 | . . . . . . . 8 β’ ((π β (β Γ β) β§ π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ π β π) β βπ β ran π (π β π β§ π β π)) |
13 | 12 | 3expb 1120 | . . . . . . 7 β’ ((π β (β Γ β) β§ (π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ π β π)) β βπ β ran π (π β π β§ π β π)) |
14 | 13 | anim1i 615 | . . . . . 6 β’ (((π β (β Γ β) β§ (π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ π β π)) β§ π β π΄) β (βπ β ran π (π β π β§ π β π) β§ π β π΄)) |
15 | 14 | anasss 467 | . . . . 5 β’ ((π β (β Γ β) β§ ((π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ π β π) β§ π β π΄)) β (βπ β ran π (π β π β§ π β π) β§ π β π΄)) |
16 | 9, 15 | sylan2br 595 | . . . 4 β’ ((π β (β Γ β) β§ (π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ (π β π β§ π β π΄))) β (βπ β ran π (π β π β§ π β π) β§ π β π΄)) |
17 | r19.41v 3188 | . . . . 5 β’ (βπ β ran π ((π β π β§ π β π) β§ π β π΄) β (βπ β ran π (π β π β§ π β π) β§ π β π΄)) | |
18 | simpll 765 | . . . . . . 7 β’ (((π β π β§ π β π) β§ π β π΄) β π β π) | |
19 | simplr 767 | . . . . . . . 8 β’ (((π β π β§ π β π) β§ π β π΄) β π β π) | |
20 | simpr 485 | . . . . . . . 8 β’ (((π β π β§ π β π) β§ π β π΄) β π β π΄) | |
21 | 19, 20 | sstrd 3991 | . . . . . . 7 β’ (((π β π β§ π β π) β§ π β π΄) β π β π΄) |
22 | 18, 21 | jca 512 | . . . . . 6 β’ (((π β π β§ π β π) β§ π β π΄) β (π β π β§ π β π΄)) |
23 | 22 | reximi 3084 | . . . . 5 β’ (βπ β ran π ((π β π β§ π β π) β§ π β π΄) β βπ β ran π (π β π β§ π β π΄)) |
24 | 17, 23 | sylbir 234 | . . . 4 β’ ((βπ β ran π (π β π β§ π β π) β§ π β π΄) β βπ β ran π (π β π β§ π β π΄)) |
25 | 16, 24 | syl 17 | . . 3 β’ ((π β (β Γ β) β§ (π β ran (π β ran (,), π β ran (,) β¦ (π Γ π)) β§ (π β π β§ π β π΄))) β βπ β ran π (π β π β§ π β π΄)) |
26 | 25 | rexlimdvaa 3156 | . 2 β’ (π β (β Γ β) β (βπ β ran (π β ran (,), π β ran (,) β¦ (π Γ π))(π β π β§ π β π΄) β βπ β ran π (π β π β§ π β π΄))) |
27 | 5, 8, 26 | sylc 65 | 1 β’ ((π΄ β (π½ Γt π½) β§ π β π΄) β βπ β ran π (π β π β§ π β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β wss 3947 βͺ cuni 4907 Γ cxp 5673 ran crn 5676 βcfv 6540 (class class class)co 7405 β cmpo 7407 βcr 11105 1c1 11107 ici 11108 + caddc 11109 Β· cmul 11111 / cdiv 11867 2c2 12263 β€cz 12554 (,)cioo 13320 [,)cico 13322 βcexp 14023 topGenctg 17379 Γt ctx 23055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-refld 21149 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-cmp 22882 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-fcls 23436 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-cfil 24763 df-cmet 24765 df-cms 24843 df-limc 25374 df-dv 25375 df-log 26056 df-cxp 26057 df-logb 26259 |
This theorem is referenced by: dya2iocuni 33270 |
Copyright terms: Public domain | W3C validator |