Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3lexlogpow2ineq1 Structured version   Visualization version   GIF version

Theorem 3lexlogpow2ineq1 42059
Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.)
Assertion
Ref Expression
3lexlogpow2ineq1 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))

Proof of Theorem 3lexlogpow2ineq1
StepHypRef Expression
1 tru 1544 . 2
2 8lt9 12465 . . . . . . . 8 8 < 9
3 2z 12649 . . . . . . . . . . 11 2 ∈ ℤ
4 uzid 12893 . . . . . . . . . . 11 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
53, 4ax-mp 5 . . . . . . . . . 10 2 ∈ (ℤ‘2)
6 8nn 12361 . . . . . . . . . . 11 8 ∈ ℕ
7 nnrp 13046 . . . . . . . . . . 11 (8 ∈ ℕ → 8 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . . . . 10 8 ∈ ℝ+
9 9nn 12364 . . . . . . . . . . 11 9 ∈ ℕ
10 nnrp 13046 . . . . . . . . . . 11 (9 ∈ ℕ → 9 ∈ ℝ+)
119, 10ax-mp 5 . . . . . . . . . 10 9 ∈ ℝ+
125, 8, 113pm3.2i 1340 . . . . . . . . 9 (2 ∈ (ℤ‘2) ∧ 8 ∈ ℝ+ ∧ 9 ∈ ℝ+)
13 logblt 26827 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 8 ∈ ℝ+ ∧ 9 ∈ ℝ+) → (8 < 9 ↔ (2 logb 8) < (2 logb 9)))
1412, 13ax-mp 5 . . . . . . . 8 (8 < 9 ↔ (2 logb 8) < (2 logb 9))
152, 14mpbi 230 . . . . . . 7 (2 logb 8) < (2 logb 9)
1615a1i 11 . . . . . 6 (⊤ → (2 logb 8) < (2 logb 9))
17 eqid 2737 . . . . . . . . . 10 8 = 8
18 cu2 14239 . . . . . . . . . 10 (2↑3) = 8
1917, 18eqtr4i 2768 . . . . . . . . 9 8 = (2↑3)
2019a1i 11 . . . . . . . 8 (⊤ → 8 = (2↑3))
2120oveq2d 7447 . . . . . . 7 (⊤ → (2 logb 8) = (2 logb (2↑3)))
22 2rp 13039 . . . . . . . . 9 2 ∈ ℝ+
2322a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ+)
24 1red 11262 . . . . . . . . . 10 (⊤ → 1 ∈ ℝ)
25 1lt2 12437 . . . . . . . . . . 11 1 < 2
2625a1i 11 . . . . . . . . . 10 (⊤ → 1 < 2)
2724, 26ltned 11397 . . . . . . . . 9 (⊤ → 1 ≠ 2)
2827necomd 2996 . . . . . . . 8 (⊤ → 2 ≠ 1)
29 3z 12650 . . . . . . . . 9 3 ∈ ℤ
3029a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℤ)
3123, 28, 30relogbexpd 41975 . . . . . . 7 (⊤ → (2 logb (2↑3)) = 3)
3221, 31eqtrd 2777 . . . . . 6 (⊤ → (2 logb 8) = 3)
33 eqid 2737 . . . . . . . . 9 9 = 9
34 sq3 14237 . . . . . . . . 9 (3↑2) = 9
3533, 34eqtr4i 2768 . . . . . . . 8 9 = (3↑2)
3635a1i 11 . . . . . . 7 (⊤ → 9 = (3↑2))
3736oveq2d 7447 . . . . . 6 (⊤ → (2 logb 9) = (2 logb (3↑2)))
3816, 32, 373brtr3d 5174 . . . . 5 (⊤ → 3 < (2 logb (3↑2)))
39 3re 12346 . . . . . . . . 9 3 ∈ ℝ
4039a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℝ)
4140recnd 11289 . . . . . . 7 (⊤ → 3 ∈ ℂ)
42 2re 12340 . . . . . . . . 9 2 ∈ ℝ
4342a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ)
4443recnd 11289 . . . . . . 7 (⊤ → 2 ∈ ℂ)
45 2pos 12369 . . . . . . . . 9 0 < 2
4645a1i 11 . . . . . . . 8 (⊤ → 0 < 2)
4746gt0ne0d 11827 . . . . . . 7 (⊤ → 2 ≠ 0)
4841, 44, 47divcan1d 12044 . . . . . 6 (⊤ → ((3 / 2) · 2) = 3)
4948eqcomd 2743 . . . . 5 (⊤ → 3 = ((3 / 2) · 2))
50 3pos 12371 . . . . . . . . 9 0 < 3
5150a1i 11 . . . . . . . 8 (⊤ → 0 < 3)
5240, 51elrpd 13074 . . . . . . 7 (⊤ → 3 ∈ ℝ+)
533a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℤ)
5423, 28, 52, 53relogbzexpd 41976 . . . . . 6 (⊤ → (2 logb (3↑2)) = (2 · (2 logb 3)))
5543, 46, 40, 51, 28relogbcld 41974 . . . . . . . 8 (⊤ → (2 logb 3) ∈ ℝ)
5655recnd 11289 . . . . . . 7 (⊤ → (2 logb 3) ∈ ℂ)
5744, 56mulcomd 11282 . . . . . 6 (⊤ → (2 · (2 logb 3)) = ((2 logb 3) · 2))
5854, 57eqtrd 2777 . . . . 5 (⊤ → (2 logb (3↑2)) = ((2 logb 3) · 2))
5938, 49, 583brtr3d 5174 . . . 4 (⊤ → ((3 / 2) · 2) < ((2 logb 3) · 2))
6040rehalfcld 12513 . . . . 5 (⊤ → (3 / 2) ∈ ℝ)
6160, 55, 23ltmul1d 13118 . . . 4 (⊤ → ((3 / 2) < (2 logb 3) ↔ ((3 / 2) · 2) < ((2 logb 3) · 2)))
6259, 61mpbird 257 . . 3 (⊤ → (3 / 2) < (2 logb 3))
63 2nn0 12543 . . . . . . . . 9 2 ∈ ℕ0
64 3nn0 12544 . . . . . . . . 9 3 ∈ ℕ0
65 7nn0 12548 . . . . . . . . 9 7 ∈ ℕ0
66 7lt10 12866 . . . . . . . . 9 7 < 10
67 2lt3 12438 . . . . . . . . 9 2 < 3
6863, 64, 65, 63, 66, 67decltc 12762 . . . . . . . 8 27 < 32
69 7nn 12358 . . . . . . . . . . . 12 7 ∈ ℕ
7063, 69decnncl 12753 . . . . . . . . . . 11 27 ∈ ℕ
71 nnrp 13046 . . . . . . . . . . 11 (27 ∈ ℕ → 27 ∈ ℝ+)
7270, 71ax-mp 5 . . . . . . . . . 10 27 ∈ ℝ+
73 2nn 12339 . . . . . . . . . . . 12 2 ∈ ℕ
7464, 73decnncl 12753 . . . . . . . . . . 11 32 ∈ ℕ
75 nnrp 13046 . . . . . . . . . . 11 (32 ∈ ℕ → 32 ∈ ℝ+)
7674, 75ax-mp 5 . . . . . . . . . 10 32 ∈ ℝ+
775, 72, 763pm3.2i 1340 . . . . . . . . 9 (2 ∈ (ℤ‘2) ∧ 27 ∈ ℝ+32 ∈ ℝ+)
78 logblt 26827 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 27 ∈ ℝ+32 ∈ ℝ+) → (27 < 32 ↔ (2 logb 27) < (2 logb 32)))
7977, 78ax-mp 5 . . . . . . . 8 (27 < 32 ↔ (2 logb 27) < (2 logb 32))
8068, 79mpbi 230 . . . . . . 7 (2 logb 27) < (2 logb 32)
8180a1i 11 . . . . . 6 (⊤ → (2 logb 27) < (2 logb 32))
82 eqid 2737 . . . . . . . . 9 32 = 32
83 2exp5 17123 . . . . . . . . 9 (2↑5) = 32
8482, 83eqtr4i 2768 . . . . . . . 8 32 = (2↑5)
8584a1i 11 . . . . . . 7 (⊤ → 32 = (2↑5))
8685oveq2d 7447 . . . . . 6 (⊤ → (2 logb 32) = (2 logb (2↑5)))
8781, 86breqtrd 5169 . . . . 5 (⊤ → (2 logb 27) < (2 logb (2↑5)))
88 eqid 2737 . . . . . . . . . 10 27 = 27
89 3exp3 17129 . . . . . . . . . 10 (3↑3) = 27
9088, 89eqtr4i 2768 . . . . . . . . 9 27 = (3↑3)
9190a1i 11 . . . . . . . 8 (⊤ → 27 = (3↑3))
9291oveq2d 7447 . . . . . . 7 (⊤ → (2 logb 27) = (2 logb (3↑3)))
9323, 28, 52, 30relogbzexpd 41976 . . . . . . 7 (⊤ → (2 logb (3↑3)) = (3 · (2 logb 3)))
9492, 93eqtrd 2777 . . . . . 6 (⊤ → (2 logb 27) = (3 · (2 logb 3)))
9541, 56mulcomd 11282 . . . . . 6 (⊤ → (3 · (2 logb 3)) = ((2 logb 3) · 3))
9694, 95eqtrd 2777 . . . . 5 (⊤ → (2 logb 27) = ((2 logb 3) · 3))
97 5re 12353 . . . . . . . . . 10 5 ∈ ℝ
9897a1i 11 . . . . . . . . 9 (⊤ → 5 ∈ ℝ)
9998recnd 11289 . . . . . . . 8 (⊤ → 5 ∈ ℂ)
10051gt0ne0d 11827 . . . . . . . 8 (⊤ → 3 ≠ 0)
10199, 41, 100divcan1d 12044 . . . . . . 7 (⊤ → ((5 / 3) · 3) = 5)
102 5nn 12352 . . . . . . . . . . 11 5 ∈ ℕ
103102a1i 11 . . . . . . . . . 10 (⊤ → 5 ∈ ℕ)
104103nnzd 12640 . . . . . . . . 9 (⊤ → 5 ∈ ℤ)
10523, 28, 104relogbexpd 41975 . . . . . . . 8 (⊤ → (2 logb (2↑5)) = 5)
106105eqcomd 2743 . . . . . . 7 (⊤ → 5 = (2 logb (2↑5)))
107101, 106eqtrd 2777 . . . . . 6 (⊤ → ((5 / 3) · 3) = (2 logb (2↑5)))
108107eqcomd 2743 . . . . 5 (⊤ → (2 logb (2↑5)) = ((5 / 3) · 3))
10987, 96, 1083brtr3d 5174 . . . 4 (⊤ → ((2 logb 3) · 3) < ((5 / 3) · 3))
11098, 40, 100redivcld 12095 . . . . 5 (⊤ → (5 / 3) ∈ ℝ)
11155, 110, 52ltmul1d 13118 . . . 4 (⊤ → ((2 logb 3) < (5 / 3) ↔ ((2 logb 3) · 3) < ((5 / 3) · 3)))
112109, 111mpbird 257 . . 3 (⊤ → (2 logb 3) < (5 / 3))
11362, 112jca 511 . 2 (⊤ → ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3)))
1141, 113ax-mp 5 1 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wtru 1541  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  5c5 12324  7c7 12326  8c8 12327  9c9 12328  cz 12613  cdc 12733  cuz 12878  +crp 13034  cexp 14102   logb clogb 26807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-logb 26808
This theorem is referenced by:  3lexlogpow2ineq2  42060  3lexlogpow5ineq5  42061  aks6d1c7lem1  42181
  Copyright terms: Public domain W3C validator