Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3lexlogpow2ineq1 Structured version   Visualization version   GIF version

Theorem 3lexlogpow2ineq1 40108
Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.)
Assertion
Ref Expression
3lexlogpow2ineq1 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))

Proof of Theorem 3lexlogpow2ineq1
StepHypRef Expression
1 tru 1543 . 2
2 8lt9 12218 . . . . . . . 8 8 < 9
3 2z 12398 . . . . . . . . . . 11 2 ∈ ℤ
4 uzid 12643 . . . . . . . . . . 11 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
53, 4ax-mp 5 . . . . . . . . . 10 2 ∈ (ℤ‘2)
6 8nn 12114 . . . . . . . . . . 11 8 ∈ ℕ
7 nnrp 12787 . . . . . . . . . . 11 (8 ∈ ℕ → 8 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . . . . 10 8 ∈ ℝ+
9 9nn 12117 . . . . . . . . . . 11 9 ∈ ℕ
10 nnrp 12787 . . . . . . . . . . 11 (9 ∈ ℕ → 9 ∈ ℝ+)
119, 10ax-mp 5 . . . . . . . . . 10 9 ∈ ℝ+
125, 8, 113pm3.2i 1339 . . . . . . . . 9 (2 ∈ (ℤ‘2) ∧ 8 ∈ ℝ+ ∧ 9 ∈ ℝ+)
13 logblt 25979 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 8 ∈ ℝ+ ∧ 9 ∈ ℝ+) → (8 < 9 ↔ (2 logb 8) < (2 logb 9)))
1412, 13ax-mp 5 . . . . . . . 8 (8 < 9 ↔ (2 logb 8) < (2 logb 9))
152, 14mpbi 229 . . . . . . 7 (2 logb 8) < (2 logb 9)
1615a1i 11 . . . . . 6 (⊤ → (2 logb 8) < (2 logb 9))
17 eqid 2736 . . . . . . . . . 10 8 = 8
18 cu2 13963 . . . . . . . . . 10 (2↑3) = 8
1917, 18eqtr4i 2767 . . . . . . . . 9 8 = (2↑3)
2019a1i 11 . . . . . . . 8 (⊤ → 8 = (2↑3))
2120oveq2d 7323 . . . . . . 7 (⊤ → (2 logb 8) = (2 logb (2↑3)))
22 2rp 12781 . . . . . . . . 9 2 ∈ ℝ+
2322a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ+)
24 1red 11022 . . . . . . . . . 10 (⊤ → 1 ∈ ℝ)
25 1lt2 12190 . . . . . . . . . . 11 1 < 2
2625a1i 11 . . . . . . . . . 10 (⊤ → 1 < 2)
2724, 26ltned 11157 . . . . . . . . 9 (⊤ → 1 ≠ 2)
2827necomd 2997 . . . . . . . 8 (⊤ → 2 ≠ 1)
29 3z 12399 . . . . . . . . 9 3 ∈ ℤ
3029a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℤ)
3123, 28, 30relogbexpd 40024 . . . . . . 7 (⊤ → (2 logb (2↑3)) = 3)
3221, 31eqtrd 2776 . . . . . 6 (⊤ → (2 logb 8) = 3)
33 eqid 2736 . . . . . . . . 9 9 = 9
34 sq3 13961 . . . . . . . . 9 (3↑2) = 9
3533, 34eqtr4i 2767 . . . . . . . 8 9 = (3↑2)
3635a1i 11 . . . . . . 7 (⊤ → 9 = (3↑2))
3736oveq2d 7323 . . . . . 6 (⊤ → (2 logb 9) = (2 logb (3↑2)))
3816, 32, 373brtr3d 5112 . . . . 5 (⊤ → 3 < (2 logb (3↑2)))
39 3re 12099 . . . . . . . . 9 3 ∈ ℝ
4039a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℝ)
4140recnd 11049 . . . . . . 7 (⊤ → 3 ∈ ℂ)
42 2re 12093 . . . . . . . . 9 2 ∈ ℝ
4342a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ)
4443recnd 11049 . . . . . . 7 (⊤ → 2 ∈ ℂ)
45 2pos 12122 . . . . . . . . 9 0 < 2
4645a1i 11 . . . . . . . 8 (⊤ → 0 < 2)
4746gt0ne0d 11585 . . . . . . 7 (⊤ → 2 ≠ 0)
4841, 44, 47divcan1d 11798 . . . . . 6 (⊤ → ((3 / 2) · 2) = 3)
4948eqcomd 2742 . . . . 5 (⊤ → 3 = ((3 / 2) · 2))
50 3pos 12124 . . . . . . . . 9 0 < 3
5150a1i 11 . . . . . . . 8 (⊤ → 0 < 3)
5240, 51elrpd 12815 . . . . . . 7 (⊤ → 3 ∈ ℝ+)
533a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℤ)
5423, 28, 52, 53relogbzexpd 40025 . . . . . 6 (⊤ → (2 logb (3↑2)) = (2 · (2 logb 3)))
5543, 46, 40, 51, 28relogbcld 40023 . . . . . . . 8 (⊤ → (2 logb 3) ∈ ℝ)
5655recnd 11049 . . . . . . 7 (⊤ → (2 logb 3) ∈ ℂ)
5744, 56mulcomd 11042 . . . . . 6 (⊤ → (2 · (2 logb 3)) = ((2 logb 3) · 2))
5854, 57eqtrd 2776 . . . . 5 (⊤ → (2 logb (3↑2)) = ((2 logb 3) · 2))
5938, 49, 583brtr3d 5112 . . . 4 (⊤ → ((3 / 2) · 2) < ((2 logb 3) · 2))
6040rehalfcld 12266 . . . . 5 (⊤ → (3 / 2) ∈ ℝ)
6160, 55, 23ltmul1d 12859 . . . 4 (⊤ → ((3 / 2) < (2 logb 3) ↔ ((3 / 2) · 2) < ((2 logb 3) · 2)))
6259, 61mpbird 257 . . 3 (⊤ → (3 / 2) < (2 logb 3))
63 2nn0 12296 . . . . . . . . 9 2 ∈ ℕ0
64 3nn0 12297 . . . . . . . . 9 3 ∈ ℕ0
65 7nn0 12301 . . . . . . . . 9 7 ∈ ℕ0
66 7lt10 12616 . . . . . . . . 9 7 < 10
67 2lt3 12191 . . . . . . . . 9 2 < 3
6863, 64, 65, 63, 66, 67decltc 12512 . . . . . . . 8 27 < 32
69 7nn 12111 . . . . . . . . . . . 12 7 ∈ ℕ
7063, 69decnncl 12503 . . . . . . . . . . 11 27 ∈ ℕ
71 nnrp 12787 . . . . . . . . . . 11 (27 ∈ ℕ → 27 ∈ ℝ+)
7270, 71ax-mp 5 . . . . . . . . . 10 27 ∈ ℝ+
73 2nn 12092 . . . . . . . . . . . 12 2 ∈ ℕ
7464, 73decnncl 12503 . . . . . . . . . . 11 32 ∈ ℕ
75 nnrp 12787 . . . . . . . . . . 11 (32 ∈ ℕ → 32 ∈ ℝ+)
7674, 75ax-mp 5 . . . . . . . . . 10 32 ∈ ℝ+
775, 72, 763pm3.2i 1339 . . . . . . . . 9 (2 ∈ (ℤ‘2) ∧ 27 ∈ ℝ+32 ∈ ℝ+)
78 logblt 25979 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 27 ∈ ℝ+32 ∈ ℝ+) → (27 < 32 ↔ (2 logb 27) < (2 logb 32)))
7977, 78ax-mp 5 . . . . . . . 8 (27 < 32 ↔ (2 logb 27) < (2 logb 32))
8068, 79mpbi 229 . . . . . . 7 (2 logb 27) < (2 logb 32)
8180a1i 11 . . . . . 6 (⊤ → (2 logb 27) < (2 logb 32))
82 eqid 2736 . . . . . . . . 9 32 = 32
83 2exp5 16832 . . . . . . . . 9 (2↑5) = 32
8482, 83eqtr4i 2767 . . . . . . . 8 32 = (2↑5)
8584a1i 11 . . . . . . 7 (⊤ → 32 = (2↑5))
8685oveq2d 7323 . . . . . 6 (⊤ → (2 logb 32) = (2 logb (2↑5)))
8781, 86breqtrd 5107 . . . . 5 (⊤ → (2 logb 27) < (2 logb (2↑5)))
88 eqid 2736 . . . . . . . . . 10 27 = 27
89 3exp3 16838 . . . . . . . . . 10 (3↑3) = 27
9088, 89eqtr4i 2767 . . . . . . . . 9 27 = (3↑3)
9190a1i 11 . . . . . . . 8 (⊤ → 27 = (3↑3))
9291oveq2d 7323 . . . . . . 7 (⊤ → (2 logb 27) = (2 logb (3↑3)))
9323, 28, 52, 30relogbzexpd 40025 . . . . . . 7 (⊤ → (2 logb (3↑3)) = (3 · (2 logb 3)))
9492, 93eqtrd 2776 . . . . . 6 (⊤ → (2 logb 27) = (3 · (2 logb 3)))
9541, 56mulcomd 11042 . . . . . 6 (⊤ → (3 · (2 logb 3)) = ((2 logb 3) · 3))
9694, 95eqtrd 2776 . . . . 5 (⊤ → (2 logb 27) = ((2 logb 3) · 3))
97 5re 12106 . . . . . . . . . 10 5 ∈ ℝ
9897a1i 11 . . . . . . . . 9 (⊤ → 5 ∈ ℝ)
9998recnd 11049 . . . . . . . 8 (⊤ → 5 ∈ ℂ)
10051gt0ne0d 11585 . . . . . . . 8 (⊤ → 3 ≠ 0)
10199, 41, 100divcan1d 11798 . . . . . . 7 (⊤ → ((5 / 3) · 3) = 5)
102 5nn 12105 . . . . . . . . . . 11 5 ∈ ℕ
103102a1i 11 . . . . . . . . . 10 (⊤ → 5 ∈ ℕ)
104103nnzd 12471 . . . . . . . . 9 (⊤ → 5 ∈ ℤ)
10523, 28, 104relogbexpd 40024 . . . . . . . 8 (⊤ → (2 logb (2↑5)) = 5)
106105eqcomd 2742 . . . . . . 7 (⊤ → 5 = (2 logb (2↑5)))
107101, 106eqtrd 2776 . . . . . 6 (⊤ → ((5 / 3) · 3) = (2 logb (2↑5)))
108107eqcomd 2742 . . . . 5 (⊤ → (2 logb (2↑5)) = ((5 / 3) · 3))
10987, 96, 1083brtr3d 5112 . . . 4 (⊤ → ((2 logb 3) · 3) < ((5 / 3) · 3))
11098, 40, 100redivcld 11849 . . . . 5 (⊤ → (5 / 3) ∈ ℝ)
11155, 110, 52ltmul1d 12859 . . . 4 (⊤ → ((2 logb 3) < (5 / 3) ↔ ((2 logb 3) · 3) < ((5 / 3) · 3)))
112109, 111mpbird 257 . . 3 (⊤ → (2 logb 3) < (5 / 3))
11362, 112jca 513 . 2 (⊤ → ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3)))
1141, 113ax-mp 5 1 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1087   = wceq 1539  wtru 1540  wcel 2104   class class class wbr 5081  cfv 6458  (class class class)co 7307  cr 10916  0cc0 10917  1c1 10918   · cmul 10922   < clt 11055   / cdiv 11678  cn 12019  2c2 12074  3c3 12075  5c5 12077  7c7 12079  8c8 12080  9c9 12081  cz 12365  cdc 12483  cuz 12628  +crp 12776  cexp 13828   logb clogb 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-fi 9214  df-sup 9245  df-inf 9246  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-ioo 13129  df-ioc 13130  df-ico 13131  df-icc 13132  df-fz 13286  df-fzo 13429  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829  df-fac 14034  df-bc 14063  df-hash 14091  df-shft 14823  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-limsup 15225  df-clim 15242  df-rlim 15243  df-sum 15443  df-ef 15822  df-sin 15824  df-cos 15825  df-pi 15827  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-hom 17031  df-cco 17032  df-rest 17178  df-topn 17179  df-0g 17197  df-gsum 17198  df-topgen 17199  df-pt 17200  df-prds 17203  df-xrs 17258  df-qtop 17263  df-imas 17264  df-xps 17266  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-mulg 18746  df-cntz 18968  df-cmn 19433  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-fbas 20639  df-fg 20640  df-cnfld 20643  df-top 22088  df-topon 22105  df-topsp 22127  df-bases 22141  df-cld 22215  df-ntr 22216  df-cls 22217  df-nei 22294  df-lp 22332  df-perf 22333  df-cn 22423  df-cnp 22424  df-haus 22511  df-tx 22758  df-hmeo 22951  df-fil 23042  df-fm 23134  df-flim 23135  df-flf 23136  df-xms 23518  df-ms 23519  df-tms 23520  df-cncf 24086  df-limc 25075  df-dv 25076  df-log 25757  df-cxp 25758  df-logb 25960
This theorem is referenced by:  3lexlogpow2ineq2  40109  3lexlogpow5ineq5  40110
  Copyright terms: Public domain W3C validator