Proof of Theorem 3lexlogpow2ineq1
| Step | Hyp | Ref
| Expression |
| 1 | | tru 1544 |
. 2
⊢
⊤ |
| 2 | | 8lt9 12444 |
. . . . . . . 8
⊢ 8 <
9 |
| 3 | | 2z 12629 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
| 4 | | uzid 12872 |
. . . . . . . . . . 11
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . 10
⊢ 2 ∈
(ℤ≥‘2) |
| 6 | | 8nn 12340 |
. . . . . . . . . . 11
⊢ 8 ∈
ℕ |
| 7 | | nnrp 13025 |
. . . . . . . . . . 11
⊢ (8 ∈
ℕ → 8 ∈ ℝ+) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . 10
⊢ 8 ∈
ℝ+ |
| 9 | | 9nn 12343 |
. . . . . . . . . . 11
⊢ 9 ∈
ℕ |
| 10 | | nnrp 13025 |
. . . . . . . . . . 11
⊢ (9 ∈
ℕ → 9 ∈ ℝ+) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . . 10
⊢ 9 ∈
ℝ+ |
| 12 | 5, 8, 11 | 3pm3.2i 1340 |
. . . . . . . . 9
⊢ (2 ∈
(ℤ≥‘2) ∧ 8 ∈ ℝ+ ∧ 9
∈ ℝ+) |
| 13 | | logblt 26751 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 8 ∈ ℝ+
∧ 9 ∈ ℝ+) → (8 < 9 ↔ (2 logb
8) < (2 logb 9))) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢ (8 < 9
↔ (2 logb 8) < (2 logb 9)) |
| 15 | 2, 14 | mpbi 230 |
. . . . . . 7
⊢ (2
logb 8) < (2 logb 9) |
| 16 | 15 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (2 logb 8) < (2 logb 9)) |
| 17 | | eqid 2736 |
. . . . . . . . . 10
⊢ 8 =
8 |
| 18 | | cu2 14223 |
. . . . . . . . . 10
⊢
(2↑3) = 8 |
| 19 | 17, 18 | eqtr4i 2762 |
. . . . . . . . 9
⊢ 8 =
(2↑3) |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 8 = (2↑3)) |
| 21 | 20 | oveq2d 7426 |
. . . . . . 7
⊢ (⊤
→ (2 logb 8) = (2 logb (2↑3))) |
| 22 | | 2rp 13018 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
| 23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 2 ∈ ℝ+) |
| 24 | | 1red 11241 |
. . . . . . . . . 10
⊢ (⊤
→ 1 ∈ ℝ) |
| 25 | | 1lt2 12416 |
. . . . . . . . . . 11
⊢ 1 <
2 |
| 26 | 25 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 1 < 2) |
| 27 | 24, 26 | ltned 11376 |
. . . . . . . . 9
⊢ (⊤
→ 1 ≠ 2) |
| 28 | 27 | necomd 2988 |
. . . . . . . 8
⊢ (⊤
→ 2 ≠ 1) |
| 29 | | 3z 12630 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 3 ∈ ℤ) |
| 31 | 23, 28, 30 | relogbexpd 41992 |
. . . . . . 7
⊢ (⊤
→ (2 logb (2↑3)) = 3) |
| 32 | 21, 31 | eqtrd 2771 |
. . . . . 6
⊢ (⊤
→ (2 logb 8) = 3) |
| 33 | | eqid 2736 |
. . . . . . . . 9
⊢ 9 =
9 |
| 34 | | sq3 14221 |
. . . . . . . . 9
⊢
(3↑2) = 9 |
| 35 | 33, 34 | eqtr4i 2762 |
. . . . . . . 8
⊢ 9 =
(3↑2) |
| 36 | 35 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 9 = (3↑2)) |
| 37 | 36 | oveq2d 7426 |
. . . . . 6
⊢ (⊤
→ (2 logb 9) = (2 logb (3↑2))) |
| 38 | 16, 32, 37 | 3brtr3d 5155 |
. . . . 5
⊢ (⊤
→ 3 < (2 logb (3↑2))) |
| 39 | | 3re 12325 |
. . . . . . . . 9
⊢ 3 ∈
ℝ |
| 40 | 39 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 3 ∈ ℝ) |
| 41 | 40 | recnd 11268 |
. . . . . . 7
⊢ (⊤
→ 3 ∈ ℂ) |
| 42 | | 2re 12319 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
| 43 | 42 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 2 ∈ ℝ) |
| 44 | 43 | recnd 11268 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℂ) |
| 45 | | 2pos 12348 |
. . . . . . . . 9
⊢ 0 <
2 |
| 46 | 45 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 0 < 2) |
| 47 | 46 | gt0ne0d 11806 |
. . . . . . 7
⊢ (⊤
→ 2 ≠ 0) |
| 48 | 41, 44, 47 | divcan1d 12023 |
. . . . . 6
⊢ (⊤
→ ((3 / 2) · 2) = 3) |
| 49 | 48 | eqcomd 2742 |
. . . . 5
⊢ (⊤
→ 3 = ((3 / 2) · 2)) |
| 50 | | 3pos 12350 |
. . . . . . . . 9
⊢ 0 <
3 |
| 51 | 50 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 0 < 3) |
| 52 | 40, 51 | elrpd 13053 |
. . . . . . 7
⊢ (⊤
→ 3 ∈ ℝ+) |
| 53 | 3 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℤ) |
| 54 | 23, 28, 52, 53 | relogbzexpd 41993 |
. . . . . 6
⊢ (⊤
→ (2 logb (3↑2)) = (2 · (2 logb
3))) |
| 55 | 43, 46, 40, 51, 28 | relogbcld 41991 |
. . . . . . . 8
⊢ (⊤
→ (2 logb 3) ∈ ℝ) |
| 56 | 55 | recnd 11268 |
. . . . . . 7
⊢ (⊤
→ (2 logb 3) ∈ ℂ) |
| 57 | 44, 56 | mulcomd 11261 |
. . . . . 6
⊢ (⊤
→ (2 · (2 logb 3)) = ((2 logb 3) ·
2)) |
| 58 | 54, 57 | eqtrd 2771 |
. . . . 5
⊢ (⊤
→ (2 logb (3↑2)) = ((2 logb 3) ·
2)) |
| 59 | 38, 49, 58 | 3brtr3d 5155 |
. . . 4
⊢ (⊤
→ ((3 / 2) · 2) < ((2 logb 3) ·
2)) |
| 60 | 40 | rehalfcld 12493 |
. . . . 5
⊢ (⊤
→ (3 / 2) ∈ ℝ) |
| 61 | 60, 55, 23 | ltmul1d 13097 |
. . . 4
⊢ (⊤
→ ((3 / 2) < (2 logb 3) ↔ ((3 / 2) · 2) < ((2
logb 3) · 2))) |
| 62 | 59, 61 | mpbird 257 |
. . 3
⊢ (⊤
→ (3 / 2) < (2 logb 3)) |
| 63 | | 2nn0 12523 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
| 64 | | 3nn0 12524 |
. . . . . . . . 9
⊢ 3 ∈
ℕ0 |
| 65 | | 7nn0 12528 |
. . . . . . . . 9
⊢ 7 ∈
ℕ0 |
| 66 | | 7lt10 12846 |
. . . . . . . . 9
⊢ 7 <
;10 |
| 67 | | 2lt3 12417 |
. . . . . . . . 9
⊢ 2 <
3 |
| 68 | 63, 64, 65, 63, 66, 67 | decltc 12742 |
. . . . . . . 8
⊢ ;27 < ;32 |
| 69 | | 7nn 12337 |
. . . . . . . . . . . 12
⊢ 7 ∈
ℕ |
| 70 | 63, 69 | decnncl 12733 |
. . . . . . . . . . 11
⊢ ;27 ∈ ℕ |
| 71 | | nnrp 13025 |
. . . . . . . . . . 11
⊢ (;27 ∈ ℕ → ;27 ∈
ℝ+) |
| 72 | 70, 71 | ax-mp 5 |
. . . . . . . . . 10
⊢ ;27 ∈
ℝ+ |
| 73 | | 2nn 12318 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
| 74 | 64, 73 | decnncl 12733 |
. . . . . . . . . . 11
⊢ ;32 ∈ ℕ |
| 75 | | nnrp 13025 |
. . . . . . . . . . 11
⊢ (;32 ∈ ℕ → ;32 ∈
ℝ+) |
| 76 | 74, 75 | ax-mp 5 |
. . . . . . . . . 10
⊢ ;32 ∈
ℝ+ |
| 77 | 5, 72, 76 | 3pm3.2i 1340 |
. . . . . . . . 9
⊢ (2 ∈
(ℤ≥‘2) ∧ ;27 ∈ ℝ+ ∧ ;32 ∈
ℝ+) |
| 78 | | logblt 26751 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ ;27 ∈ ℝ+ ∧ ;32 ∈ ℝ+) →
(;27 < ;32 ↔ (2 logb ;27) < (2 logb ;32))) |
| 79 | 77, 78 | ax-mp 5 |
. . . . . . . 8
⊢ (;27 < ;32 ↔ (2 logb ;27) < (2 logb ;32)) |
| 80 | 68, 79 | mpbi 230 |
. . . . . . 7
⊢ (2
logb ;27) < (2
logb ;32) |
| 81 | 80 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (2 logb ;27)
< (2 logb ;32)) |
| 82 | | eqid 2736 |
. . . . . . . . 9
⊢ ;32 = ;32 |
| 83 | | 2exp5 17110 |
. . . . . . . . 9
⊢
(2↑5) = ;32 |
| 84 | 82, 83 | eqtr4i 2762 |
. . . . . . . 8
⊢ ;32 = (2↑5) |
| 85 | 84 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ;32 =
(2↑5)) |
| 86 | 85 | oveq2d 7426 |
. . . . . 6
⊢ (⊤
→ (2 logb ;32) =
(2 logb (2↑5))) |
| 87 | 81, 86 | breqtrd 5150 |
. . . . 5
⊢ (⊤
→ (2 logb ;27)
< (2 logb (2↑5))) |
| 88 | | eqid 2736 |
. . . . . . . . . 10
⊢ ;27 = ;27 |
| 89 | | 3exp3 17116 |
. . . . . . . . . 10
⊢
(3↑3) = ;27 |
| 90 | 88, 89 | eqtr4i 2762 |
. . . . . . . . 9
⊢ ;27 = (3↑3) |
| 91 | 90 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ ;27 =
(3↑3)) |
| 92 | 91 | oveq2d 7426 |
. . . . . . 7
⊢ (⊤
→ (2 logb ;27) =
(2 logb (3↑3))) |
| 93 | 23, 28, 52, 30 | relogbzexpd 41993 |
. . . . . . 7
⊢ (⊤
→ (2 logb (3↑3)) = (3 · (2 logb
3))) |
| 94 | 92, 93 | eqtrd 2771 |
. . . . . 6
⊢ (⊤
→ (2 logb ;27) =
(3 · (2 logb 3))) |
| 95 | 41, 56 | mulcomd 11261 |
. . . . . 6
⊢ (⊤
→ (3 · (2 logb 3)) = ((2 logb 3) ·
3)) |
| 96 | 94, 95 | eqtrd 2771 |
. . . . 5
⊢ (⊤
→ (2 logb ;27) =
((2 logb 3) · 3)) |
| 97 | | 5re 12332 |
. . . . . . . . . 10
⊢ 5 ∈
ℝ |
| 98 | 97 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 5 ∈ ℝ) |
| 99 | 98 | recnd 11268 |
. . . . . . . 8
⊢ (⊤
→ 5 ∈ ℂ) |
| 100 | 51 | gt0ne0d 11806 |
. . . . . . . 8
⊢ (⊤
→ 3 ≠ 0) |
| 101 | 99, 41, 100 | divcan1d 12023 |
. . . . . . 7
⊢ (⊤
→ ((5 / 3) · 3) = 5) |
| 102 | | 5nn 12331 |
. . . . . . . . . . 11
⊢ 5 ∈
ℕ |
| 103 | 102 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 5 ∈ ℕ) |
| 104 | 103 | nnzd 12620 |
. . . . . . . . 9
⊢ (⊤
→ 5 ∈ ℤ) |
| 105 | 23, 28, 104 | relogbexpd 41992 |
. . . . . . . 8
⊢ (⊤
→ (2 logb (2↑5)) = 5) |
| 106 | 105 | eqcomd 2742 |
. . . . . . 7
⊢ (⊤
→ 5 = (2 logb (2↑5))) |
| 107 | 101, 106 | eqtrd 2771 |
. . . . . 6
⊢ (⊤
→ ((5 / 3) · 3) = (2 logb (2↑5))) |
| 108 | 107 | eqcomd 2742 |
. . . . 5
⊢ (⊤
→ (2 logb (2↑5)) = ((5 / 3) · 3)) |
| 109 | 87, 96, 108 | 3brtr3d 5155 |
. . . 4
⊢ (⊤
→ ((2 logb 3) · 3) < ((5 / 3) ·
3)) |
| 110 | 98, 40, 100 | redivcld 12074 |
. . . . 5
⊢ (⊤
→ (5 / 3) ∈ ℝ) |
| 111 | 55, 110, 52 | ltmul1d 13097 |
. . . 4
⊢ (⊤
→ ((2 logb 3) < (5 / 3) ↔ ((2 logb 3)
· 3) < ((5 / 3) · 3))) |
| 112 | 109, 111 | mpbird 257 |
. . 3
⊢ (⊤
→ (2 logb 3) < (5 / 3)) |
| 113 | 62, 112 | jca 511 |
. 2
⊢ (⊤
→ ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5
/ 3))) |
| 114 | 1, 113 | ax-mp 5 |
1
⊢ ((3 / 2)
< (2 logb 3) ∧ (2 logb 3) < (5 /
3)) |