Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3lexlogpow2ineq1 Structured version   Visualization version   GIF version

Theorem 3lexlogpow2ineq1 42076
Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024.)
Assertion
Ref Expression
3lexlogpow2ineq1 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))

Proof of Theorem 3lexlogpow2ineq1
StepHypRef Expression
1 tru 1544 . 2
2 8lt9 12444 . . . . . . . 8 8 < 9
3 2z 12629 . . . . . . . . . . 11 2 ∈ ℤ
4 uzid 12872 . . . . . . . . . . 11 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
53, 4ax-mp 5 . . . . . . . . . 10 2 ∈ (ℤ‘2)
6 8nn 12340 . . . . . . . . . . 11 8 ∈ ℕ
7 nnrp 13025 . . . . . . . . . . 11 (8 ∈ ℕ → 8 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . . . . 10 8 ∈ ℝ+
9 9nn 12343 . . . . . . . . . . 11 9 ∈ ℕ
10 nnrp 13025 . . . . . . . . . . 11 (9 ∈ ℕ → 9 ∈ ℝ+)
119, 10ax-mp 5 . . . . . . . . . 10 9 ∈ ℝ+
125, 8, 113pm3.2i 1340 . . . . . . . . 9 (2 ∈ (ℤ‘2) ∧ 8 ∈ ℝ+ ∧ 9 ∈ ℝ+)
13 logblt 26751 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 8 ∈ ℝ+ ∧ 9 ∈ ℝ+) → (8 < 9 ↔ (2 logb 8) < (2 logb 9)))
1412, 13ax-mp 5 . . . . . . . 8 (8 < 9 ↔ (2 logb 8) < (2 logb 9))
152, 14mpbi 230 . . . . . . 7 (2 logb 8) < (2 logb 9)
1615a1i 11 . . . . . 6 (⊤ → (2 logb 8) < (2 logb 9))
17 eqid 2736 . . . . . . . . . 10 8 = 8
18 cu2 14223 . . . . . . . . . 10 (2↑3) = 8
1917, 18eqtr4i 2762 . . . . . . . . 9 8 = (2↑3)
2019a1i 11 . . . . . . . 8 (⊤ → 8 = (2↑3))
2120oveq2d 7426 . . . . . . 7 (⊤ → (2 logb 8) = (2 logb (2↑3)))
22 2rp 13018 . . . . . . . . 9 2 ∈ ℝ+
2322a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ+)
24 1red 11241 . . . . . . . . . 10 (⊤ → 1 ∈ ℝ)
25 1lt2 12416 . . . . . . . . . . 11 1 < 2
2625a1i 11 . . . . . . . . . 10 (⊤ → 1 < 2)
2724, 26ltned 11376 . . . . . . . . 9 (⊤ → 1 ≠ 2)
2827necomd 2988 . . . . . . . 8 (⊤ → 2 ≠ 1)
29 3z 12630 . . . . . . . . 9 3 ∈ ℤ
3029a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℤ)
3123, 28, 30relogbexpd 41992 . . . . . . 7 (⊤ → (2 logb (2↑3)) = 3)
3221, 31eqtrd 2771 . . . . . 6 (⊤ → (2 logb 8) = 3)
33 eqid 2736 . . . . . . . . 9 9 = 9
34 sq3 14221 . . . . . . . . 9 (3↑2) = 9
3533, 34eqtr4i 2762 . . . . . . . 8 9 = (3↑2)
3635a1i 11 . . . . . . 7 (⊤ → 9 = (3↑2))
3736oveq2d 7426 . . . . . 6 (⊤ → (2 logb 9) = (2 logb (3↑2)))
3816, 32, 373brtr3d 5155 . . . . 5 (⊤ → 3 < (2 logb (3↑2)))
39 3re 12325 . . . . . . . . 9 3 ∈ ℝ
4039a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℝ)
4140recnd 11268 . . . . . . 7 (⊤ → 3 ∈ ℂ)
42 2re 12319 . . . . . . . . 9 2 ∈ ℝ
4342a1i 11 . . . . . . . 8 (⊤ → 2 ∈ ℝ)
4443recnd 11268 . . . . . . 7 (⊤ → 2 ∈ ℂ)
45 2pos 12348 . . . . . . . . 9 0 < 2
4645a1i 11 . . . . . . . 8 (⊤ → 0 < 2)
4746gt0ne0d 11806 . . . . . . 7 (⊤ → 2 ≠ 0)
4841, 44, 47divcan1d 12023 . . . . . 6 (⊤ → ((3 / 2) · 2) = 3)
4948eqcomd 2742 . . . . 5 (⊤ → 3 = ((3 / 2) · 2))
50 3pos 12350 . . . . . . . . 9 0 < 3
5150a1i 11 . . . . . . . 8 (⊤ → 0 < 3)
5240, 51elrpd 13053 . . . . . . 7 (⊤ → 3 ∈ ℝ+)
533a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℤ)
5423, 28, 52, 53relogbzexpd 41993 . . . . . 6 (⊤ → (2 logb (3↑2)) = (2 · (2 logb 3)))
5543, 46, 40, 51, 28relogbcld 41991 . . . . . . . 8 (⊤ → (2 logb 3) ∈ ℝ)
5655recnd 11268 . . . . . . 7 (⊤ → (2 logb 3) ∈ ℂ)
5744, 56mulcomd 11261 . . . . . 6 (⊤ → (2 · (2 logb 3)) = ((2 logb 3) · 2))
5854, 57eqtrd 2771 . . . . 5 (⊤ → (2 logb (3↑2)) = ((2 logb 3) · 2))
5938, 49, 583brtr3d 5155 . . . 4 (⊤ → ((3 / 2) · 2) < ((2 logb 3) · 2))
6040rehalfcld 12493 . . . . 5 (⊤ → (3 / 2) ∈ ℝ)
6160, 55, 23ltmul1d 13097 . . . 4 (⊤ → ((3 / 2) < (2 logb 3) ↔ ((3 / 2) · 2) < ((2 logb 3) · 2)))
6259, 61mpbird 257 . . 3 (⊤ → (3 / 2) < (2 logb 3))
63 2nn0 12523 . . . . . . . . 9 2 ∈ ℕ0
64 3nn0 12524 . . . . . . . . 9 3 ∈ ℕ0
65 7nn0 12528 . . . . . . . . 9 7 ∈ ℕ0
66 7lt10 12846 . . . . . . . . 9 7 < 10
67 2lt3 12417 . . . . . . . . 9 2 < 3
6863, 64, 65, 63, 66, 67decltc 12742 . . . . . . . 8 27 < 32
69 7nn 12337 . . . . . . . . . . . 12 7 ∈ ℕ
7063, 69decnncl 12733 . . . . . . . . . . 11 27 ∈ ℕ
71 nnrp 13025 . . . . . . . . . . 11 (27 ∈ ℕ → 27 ∈ ℝ+)
7270, 71ax-mp 5 . . . . . . . . . 10 27 ∈ ℝ+
73 2nn 12318 . . . . . . . . . . . 12 2 ∈ ℕ
7464, 73decnncl 12733 . . . . . . . . . . 11 32 ∈ ℕ
75 nnrp 13025 . . . . . . . . . . 11 (32 ∈ ℕ → 32 ∈ ℝ+)
7674, 75ax-mp 5 . . . . . . . . . 10 32 ∈ ℝ+
775, 72, 763pm3.2i 1340 . . . . . . . . 9 (2 ∈ (ℤ‘2) ∧ 27 ∈ ℝ+32 ∈ ℝ+)
78 logblt 26751 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 27 ∈ ℝ+32 ∈ ℝ+) → (27 < 32 ↔ (2 logb 27) < (2 logb 32)))
7977, 78ax-mp 5 . . . . . . . 8 (27 < 32 ↔ (2 logb 27) < (2 logb 32))
8068, 79mpbi 230 . . . . . . 7 (2 logb 27) < (2 logb 32)
8180a1i 11 . . . . . 6 (⊤ → (2 logb 27) < (2 logb 32))
82 eqid 2736 . . . . . . . . 9 32 = 32
83 2exp5 17110 . . . . . . . . 9 (2↑5) = 32
8482, 83eqtr4i 2762 . . . . . . . 8 32 = (2↑5)
8584a1i 11 . . . . . . 7 (⊤ → 32 = (2↑5))
8685oveq2d 7426 . . . . . 6 (⊤ → (2 logb 32) = (2 logb (2↑5)))
8781, 86breqtrd 5150 . . . . 5 (⊤ → (2 logb 27) < (2 logb (2↑5)))
88 eqid 2736 . . . . . . . . . 10 27 = 27
89 3exp3 17116 . . . . . . . . . 10 (3↑3) = 27
9088, 89eqtr4i 2762 . . . . . . . . 9 27 = (3↑3)
9190a1i 11 . . . . . . . 8 (⊤ → 27 = (3↑3))
9291oveq2d 7426 . . . . . . 7 (⊤ → (2 logb 27) = (2 logb (3↑3)))
9323, 28, 52, 30relogbzexpd 41993 . . . . . . 7 (⊤ → (2 logb (3↑3)) = (3 · (2 logb 3)))
9492, 93eqtrd 2771 . . . . . 6 (⊤ → (2 logb 27) = (3 · (2 logb 3)))
9541, 56mulcomd 11261 . . . . . 6 (⊤ → (3 · (2 logb 3)) = ((2 logb 3) · 3))
9694, 95eqtrd 2771 . . . . 5 (⊤ → (2 logb 27) = ((2 logb 3) · 3))
97 5re 12332 . . . . . . . . . 10 5 ∈ ℝ
9897a1i 11 . . . . . . . . 9 (⊤ → 5 ∈ ℝ)
9998recnd 11268 . . . . . . . 8 (⊤ → 5 ∈ ℂ)
10051gt0ne0d 11806 . . . . . . . 8 (⊤ → 3 ≠ 0)
10199, 41, 100divcan1d 12023 . . . . . . 7 (⊤ → ((5 / 3) · 3) = 5)
102 5nn 12331 . . . . . . . . . . 11 5 ∈ ℕ
103102a1i 11 . . . . . . . . . 10 (⊤ → 5 ∈ ℕ)
104103nnzd 12620 . . . . . . . . 9 (⊤ → 5 ∈ ℤ)
10523, 28, 104relogbexpd 41992 . . . . . . . 8 (⊤ → (2 logb (2↑5)) = 5)
106105eqcomd 2742 . . . . . . 7 (⊤ → 5 = (2 logb (2↑5)))
107101, 106eqtrd 2771 . . . . . 6 (⊤ → ((5 / 3) · 3) = (2 logb (2↑5)))
108107eqcomd 2742 . . . . 5 (⊤ → (2 logb (2↑5)) = ((5 / 3) · 3))
10987, 96, 1083brtr3d 5155 . . . 4 (⊤ → ((2 logb 3) · 3) < ((5 / 3) · 3))
11098, 40, 100redivcld 12074 . . . . 5 (⊤ → (5 / 3) ∈ ℝ)
11155, 110, 52ltmul1d 13097 . . . 4 (⊤ → ((2 logb 3) < (5 / 3) ↔ ((2 logb 3) · 3) < ((5 / 3) · 3)))
112109, 111mpbird 257 . . 3 (⊤ → (2 logb 3) < (5 / 3))
11362, 112jca 511 . 2 (⊤ → ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3)))
1141, 113ax-mp 5 1 ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5 / 3))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  5c5 12303  7c7 12305  8c8 12306  9c9 12307  cz 12593  cdc 12713  cuz 12857  +crp 13013  cexp 14084   logb clogb 26731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523  df-logb 26732
This theorem is referenced by:  3lexlogpow2ineq2  42077  3lexlogpow5ineq5  42078  aks6d1c7lem1  42198
  Copyright terms: Public domain W3C validator