Proof of Theorem 3lexlogpow2ineq1
Step | Hyp | Ref
| Expression |
1 | | tru 1545 |
. 2
⊢
⊤ |
2 | | 8lt9 12155 |
. . . . . . . 8
⊢ 8 <
9 |
3 | | 2z 12335 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
4 | | uzid 12579 |
. . . . . . . . . . 11
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . . 10
⊢ 2 ∈
(ℤ≥‘2) |
6 | | 8nn 12051 |
. . . . . . . . . . 11
⊢ 8 ∈
ℕ |
7 | | nnrp 12723 |
. . . . . . . . . . 11
⊢ (8 ∈
ℕ → 8 ∈ ℝ+) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . 10
⊢ 8 ∈
ℝ+ |
9 | | 9nn 12054 |
. . . . . . . . . . 11
⊢ 9 ∈
ℕ |
10 | | nnrp 12723 |
. . . . . . . . . . 11
⊢ (9 ∈
ℕ → 9 ∈ ℝ+) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . . 10
⊢ 9 ∈
ℝ+ |
12 | 5, 8, 11 | 3pm3.2i 1337 |
. . . . . . . . 9
⊢ (2 ∈
(ℤ≥‘2) ∧ 8 ∈ ℝ+ ∧ 9
∈ ℝ+) |
13 | | logblt 25915 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 8 ∈ ℝ+
∧ 9 ∈ ℝ+) → (8 < 9 ↔ (2 logb
8) < (2 logb 9))) |
14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
⊢ (8 < 9
↔ (2 logb 8) < (2 logb 9)) |
15 | 2, 14 | mpbi 229 |
. . . . . . 7
⊢ (2
logb 8) < (2 logb 9) |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (2 logb 8) < (2 logb 9)) |
17 | | eqid 2739 |
. . . . . . . . . 10
⊢ 8 =
8 |
18 | | cu2 13898 |
. . . . . . . . . 10
⊢
(2↑3) = 8 |
19 | 17, 18 | eqtr4i 2770 |
. . . . . . . . 9
⊢ 8 =
(2↑3) |
20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 8 = (2↑3)) |
21 | 20 | oveq2d 7284 |
. . . . . . 7
⊢ (⊤
→ (2 logb 8) = (2 logb (2↑3))) |
22 | | 2rp 12717 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 2 ∈ ℝ+) |
24 | | 1red 10960 |
. . . . . . . . . 10
⊢ (⊤
→ 1 ∈ ℝ) |
25 | | 1lt2 12127 |
. . . . . . . . . . 11
⊢ 1 <
2 |
26 | 25 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 1 < 2) |
27 | 24, 26 | ltned 11094 |
. . . . . . . . 9
⊢ (⊤
→ 1 ≠ 2) |
28 | 27 | necomd 3000 |
. . . . . . . 8
⊢ (⊤
→ 2 ≠ 1) |
29 | | 3z 12336 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 3 ∈ ℤ) |
31 | 23, 28, 30 | relogbexpd 39961 |
. . . . . . 7
⊢ (⊤
→ (2 logb (2↑3)) = 3) |
32 | 21, 31 | eqtrd 2779 |
. . . . . 6
⊢ (⊤
→ (2 logb 8) = 3) |
33 | | eqid 2739 |
. . . . . . . . 9
⊢ 9 =
9 |
34 | | sq3 13896 |
. . . . . . . . 9
⊢
(3↑2) = 9 |
35 | 33, 34 | eqtr4i 2770 |
. . . . . . . 8
⊢ 9 =
(3↑2) |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 9 = (3↑2)) |
37 | 36 | oveq2d 7284 |
. . . . . 6
⊢ (⊤
→ (2 logb 9) = (2 logb (3↑2))) |
38 | 16, 32, 37 | 3brtr3d 5109 |
. . . . 5
⊢ (⊤
→ 3 < (2 logb (3↑2))) |
39 | | 3re 12036 |
. . . . . . . . 9
⊢ 3 ∈
ℝ |
40 | 39 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 3 ∈ ℝ) |
41 | 40 | recnd 10987 |
. . . . . . 7
⊢ (⊤
→ 3 ∈ ℂ) |
42 | | 2re 12030 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
43 | 42 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 2 ∈ ℝ) |
44 | 43 | recnd 10987 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℂ) |
45 | | 2pos 12059 |
. . . . . . . . 9
⊢ 0 <
2 |
46 | 45 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 0 < 2) |
47 | 46 | gt0ne0d 11522 |
. . . . . . 7
⊢ (⊤
→ 2 ≠ 0) |
48 | 41, 44, 47 | divcan1d 11735 |
. . . . . 6
⊢ (⊤
→ ((3 / 2) · 2) = 3) |
49 | 48 | eqcomd 2745 |
. . . . 5
⊢ (⊤
→ 3 = ((3 / 2) · 2)) |
50 | | 3pos 12061 |
. . . . . . . . 9
⊢ 0 <
3 |
51 | 50 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 0 < 3) |
52 | 40, 51 | elrpd 12751 |
. . . . . . 7
⊢ (⊤
→ 3 ∈ ℝ+) |
53 | 3 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℤ) |
54 | 23, 28, 52, 53 | relogbzexpd 39962 |
. . . . . 6
⊢ (⊤
→ (2 logb (3↑2)) = (2 · (2 logb
3))) |
55 | 43, 46, 40, 51, 28 | relogbcld 39960 |
. . . . . . . 8
⊢ (⊤
→ (2 logb 3) ∈ ℝ) |
56 | 55 | recnd 10987 |
. . . . . . 7
⊢ (⊤
→ (2 logb 3) ∈ ℂ) |
57 | 44, 56 | mulcomd 10980 |
. . . . . 6
⊢ (⊤
→ (2 · (2 logb 3)) = ((2 logb 3) ·
2)) |
58 | 54, 57 | eqtrd 2779 |
. . . . 5
⊢ (⊤
→ (2 logb (3↑2)) = ((2 logb 3) ·
2)) |
59 | 38, 49, 58 | 3brtr3d 5109 |
. . . 4
⊢ (⊤
→ ((3 / 2) · 2) < ((2 logb 3) ·
2)) |
60 | 40 | rehalfcld 12203 |
. . . . 5
⊢ (⊤
→ (3 / 2) ∈ ℝ) |
61 | 60, 55, 23 | ltmul1d 12795 |
. . . 4
⊢ (⊤
→ ((3 / 2) < (2 logb 3) ↔ ((3 / 2) · 2) < ((2
logb 3) · 2))) |
62 | 59, 61 | mpbird 256 |
. . 3
⊢ (⊤
→ (3 / 2) < (2 logb 3)) |
63 | | 2nn0 12233 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
64 | | 3nn0 12234 |
. . . . . . . . 9
⊢ 3 ∈
ℕ0 |
65 | | 7nn0 12238 |
. . . . . . . . 9
⊢ 7 ∈
ℕ0 |
66 | | 7lt10 12552 |
. . . . . . . . 9
⊢ 7 <
;10 |
67 | | 2lt3 12128 |
. . . . . . . . 9
⊢ 2 <
3 |
68 | 63, 64, 65, 63, 66, 67 | decltc 12448 |
. . . . . . . 8
⊢ ;27 < ;32 |
69 | | 7nn 12048 |
. . . . . . . . . . . 12
⊢ 7 ∈
ℕ |
70 | 63, 69 | decnncl 12439 |
. . . . . . . . . . 11
⊢ ;27 ∈ ℕ |
71 | | nnrp 12723 |
. . . . . . . . . . 11
⊢ (;27 ∈ ℕ → ;27 ∈
ℝ+) |
72 | 70, 71 | ax-mp 5 |
. . . . . . . . . 10
⊢ ;27 ∈
ℝ+ |
73 | | 2nn 12029 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
74 | 64, 73 | decnncl 12439 |
. . . . . . . . . . 11
⊢ ;32 ∈ ℕ |
75 | | nnrp 12723 |
. . . . . . . . . . 11
⊢ (;32 ∈ ℕ → ;32 ∈
ℝ+) |
76 | 74, 75 | ax-mp 5 |
. . . . . . . . . 10
⊢ ;32 ∈
ℝ+ |
77 | 5, 72, 76 | 3pm3.2i 1337 |
. . . . . . . . 9
⊢ (2 ∈
(ℤ≥‘2) ∧ ;27 ∈ ℝ+ ∧ ;32 ∈
ℝ+) |
78 | | logblt 25915 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ ;27 ∈ ℝ+ ∧ ;32 ∈ ℝ+) →
(;27 < ;32 ↔ (2 logb ;27) < (2 logb ;32))) |
79 | 77, 78 | ax-mp 5 |
. . . . . . . 8
⊢ (;27 < ;32 ↔ (2 logb ;27) < (2 logb ;32)) |
80 | 68, 79 | mpbi 229 |
. . . . . . 7
⊢ (2
logb ;27) < (2
logb ;32) |
81 | 80 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (2 logb ;27)
< (2 logb ;32)) |
82 | | eqid 2739 |
. . . . . . . . 9
⊢ ;32 = ;32 |
83 | | 2exp5 16768 |
. . . . . . . . 9
⊢
(2↑5) = ;32 |
84 | 82, 83 | eqtr4i 2770 |
. . . . . . . 8
⊢ ;32 = (2↑5) |
85 | 84 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ;32 =
(2↑5)) |
86 | 85 | oveq2d 7284 |
. . . . . 6
⊢ (⊤
→ (2 logb ;32) =
(2 logb (2↑5))) |
87 | 81, 86 | breqtrd 5104 |
. . . . 5
⊢ (⊤
→ (2 logb ;27)
< (2 logb (2↑5))) |
88 | | eqid 2739 |
. . . . . . . . . 10
⊢ ;27 = ;27 |
89 | | 3exp3 16774 |
. . . . . . . . . 10
⊢
(3↑3) = ;27 |
90 | 88, 89 | eqtr4i 2770 |
. . . . . . . . 9
⊢ ;27 = (3↑3) |
91 | 90 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ ;27 =
(3↑3)) |
92 | 91 | oveq2d 7284 |
. . . . . . 7
⊢ (⊤
→ (2 logb ;27) =
(2 logb (3↑3))) |
93 | 23, 28, 52, 30 | relogbzexpd 39962 |
. . . . . . 7
⊢ (⊤
→ (2 logb (3↑3)) = (3 · (2 logb
3))) |
94 | 92, 93 | eqtrd 2779 |
. . . . . 6
⊢ (⊤
→ (2 logb ;27) =
(3 · (2 logb 3))) |
95 | 41, 56 | mulcomd 10980 |
. . . . . 6
⊢ (⊤
→ (3 · (2 logb 3)) = ((2 logb 3) ·
3)) |
96 | 94, 95 | eqtrd 2779 |
. . . . 5
⊢ (⊤
→ (2 logb ;27) =
((2 logb 3) · 3)) |
97 | | 5re 12043 |
. . . . . . . . . 10
⊢ 5 ∈
ℝ |
98 | 97 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 5 ∈ ℝ) |
99 | 98 | recnd 10987 |
. . . . . . . 8
⊢ (⊤
→ 5 ∈ ℂ) |
100 | 51 | gt0ne0d 11522 |
. . . . . . . 8
⊢ (⊤
→ 3 ≠ 0) |
101 | 99, 41, 100 | divcan1d 11735 |
. . . . . . 7
⊢ (⊤
→ ((5 / 3) · 3) = 5) |
102 | | 5nn 12042 |
. . . . . . . . . . 11
⊢ 5 ∈
ℕ |
103 | 102 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 5 ∈ ℕ) |
104 | 103 | nnzd 12407 |
. . . . . . . . 9
⊢ (⊤
→ 5 ∈ ℤ) |
105 | 23, 28, 104 | relogbexpd 39961 |
. . . . . . . 8
⊢ (⊤
→ (2 logb (2↑5)) = 5) |
106 | 105 | eqcomd 2745 |
. . . . . . 7
⊢ (⊤
→ 5 = (2 logb (2↑5))) |
107 | 101, 106 | eqtrd 2779 |
. . . . . 6
⊢ (⊤
→ ((5 / 3) · 3) = (2 logb (2↑5))) |
108 | 107 | eqcomd 2745 |
. . . . 5
⊢ (⊤
→ (2 logb (2↑5)) = ((5 / 3) · 3)) |
109 | 87, 96, 108 | 3brtr3d 5109 |
. . . 4
⊢ (⊤
→ ((2 logb 3) · 3) < ((5 / 3) ·
3)) |
110 | 98, 40, 100 | redivcld 11786 |
. . . . 5
⊢ (⊤
→ (5 / 3) ∈ ℝ) |
111 | 55, 110, 52 | ltmul1d 12795 |
. . . 4
⊢ (⊤
→ ((2 logb 3) < (5 / 3) ↔ ((2 logb 3)
· 3) < ((5 / 3) · 3))) |
112 | 109, 111 | mpbird 256 |
. . 3
⊢ (⊤
→ (2 logb 3) < (5 / 3)) |
113 | 62, 112 | jca 511 |
. 2
⊢ (⊤
→ ((3 / 2) < (2 logb 3) ∧ (2 logb 3) < (5
/ 3))) |
114 | 1, 113 | ax-mp 5 |
1
⊢ ((3 / 2)
< (2 logb 3) ∧ (2 logb 3) < (5 /
3)) |