| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaplem4 | Structured version Visualization version GIF version | ||
| Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
| Ref | Expression |
|---|---|
| hdmaplem1.v | ⊢ 𝑉 = (Base‘𝑊) |
| hdmaplem1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| hdmaplem4.o | ⊢ 0 = (0g‘𝑊) |
| hdmaplem4.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| hdmaplem4.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hdmaplem4.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| hdmaplem4.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| hdmaplem4.e | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋})) |
| hdmaplem4.f | ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| hdmaplem4 | ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmaplem1.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | hdmaplem4.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 3 | hdmaplem1.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | hdmaplem4.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 5 | hdmaplem4.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 6 | hdmaplem4.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 7 | hdmaplem4.e | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋})) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | lspsnne1 21055 | . 2 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋})) |
| 9 | hdmaplem4.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 10 | hdmaplem4.f | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌})) | |
| 11 | 1, 2, 3, 4, 5, 9, 10 | lspsnne1 21055 | . 2 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌})) |
| 12 | ioran 985 | . . 3 ⊢ (¬ (𝑍 ∈ (𝑁‘{𝑋}) ∨ 𝑍 ∈ (𝑁‘{𝑌})) ↔ (¬ 𝑍 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑌}))) | |
| 13 | elun 4103 | . . 3 ⊢ (𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})) ↔ (𝑍 ∈ (𝑁‘{𝑋}) ∨ 𝑍 ∈ (𝑁‘{𝑌}))) | |
| 14 | 12, 13 | xchnxbir 333 | . 2 ⊢ (¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})) ↔ (¬ 𝑍 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑌}))) |
| 15 | 8, 11, 14 | sylanbrc 583 | 1 ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 ∪ cun 3900 {csn 4576 ‘cfv 6481 Basecbs 17120 0gc0g 17343 LSpanclspn 20905 LVecclvec 21037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-drng 20647 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lvec 21038 |
| This theorem is referenced by: hdmap11lem1 41886 |
| Copyright terms: Public domain | W3C validator |