Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrltned | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
xrltned.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrltned.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrltned.3 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
xrltned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltned.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrltned.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrltned.3 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
4 | 1, 2, 3 | xrgtned 43246 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
5 | 4 | necomd 2997 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2941 class class class wbr 5097 ℝ*cxr 11114 < clt 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-pre-lttri 11051 ax-pre-lttrn 11052 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 |
This theorem is referenced by: infxr 43291 infleinflem2 43295 xrpnf 43411 pimxrneun 43414 ge0lere 43456 liminflbuz2 43742 liminflimsupxrre 43744 ioorrnopnxrlem 44233 sge0hsphoire 44514 hoidmv1lelem1 44516 hoidmv1lelem2 44517 hoidmv1lelem3 44518 hoidmvlelem1 44520 hoidmvlelem4 44523 pimiooltgt 44635 |
Copyright terms: Public domain | W3C validator |