Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrltned Structured version   Visualization version   GIF version

Theorem xrltned 44620
Description: 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
xrltned.1 (𝜑𝐴 ∈ ℝ*)
xrltned.2 (𝜑𝐵 ∈ ℝ*)
xrltned.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
xrltned (𝜑𝐴𝐵)

Proof of Theorem xrltned
StepHypRef Expression
1 xrltned.1 . . 3 (𝜑𝐴 ∈ ℝ*)
2 xrltned.2 . . 3 (𝜑𝐵 ∈ ℝ*)
3 xrltned.3 . . 3 (𝜑𝐴 < 𝐵)
41, 2, 3xrgtned 44585 . 2 (𝜑𝐵𝐴)
54necomd 2990 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2934   class class class wbr 5141  *cxr 11248   < clt 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254
This theorem is referenced by:  infxr  44630  infleinflem2  44634  xrpnf  44749  pimxrneun  44752  ge0lere  44798  liminflbuz2  45084  liminflimsupxrre  45086  ioorrnopnxrlem  45575  sge0hsphoire  45858  hoidmv1lelem1  45860  hoidmv1lelem2  45861  hoidmv1lelem3  45862  hoidmvlelem1  45864  hoidmvlelem4  45867  pimiooltgt  45979
  Copyright terms: Public domain W3C validator