Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrltned Structured version   Visualization version   GIF version

Theorem xrltned 44768
Description: 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
xrltned.1 (𝜑𝐴 ∈ ℝ*)
xrltned.2 (𝜑𝐵 ∈ ℝ*)
xrltned.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
xrltned (𝜑𝐴𝐵)

Proof of Theorem xrltned
StepHypRef Expression
1 xrltned.1 . . 3 (𝜑𝐴 ∈ ℝ*)
2 xrltned.2 . . 3 (𝜑𝐵 ∈ ℝ*)
3 xrltned.3 . . 3 (𝜑𝐴 < 𝐵)
41, 2, 3xrgtned 44733 . 2 (𝜑𝐵𝐴)
54necomd 2993 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2937   class class class wbr 5152  *cxr 11285   < clt 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-pre-lttri 11220  ax-pre-lttrn 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291
This theorem is referenced by:  infxr  44778  infleinflem2  44782  xrpnf  44897  pimxrneun  44900  ge0lere  44946  liminflbuz2  45232  liminflimsupxrre  45234  ioorrnopnxrlem  45723  sge0hsphoire  46006  hoidmv1lelem1  46008  hoidmv1lelem2  46009  hoidmv1lelem3  46010  hoidmvlelem1  46012  hoidmvlelem4  46015  pimiooltgt  46127
  Copyright terms: Public domain W3C validator