| Step | Hyp | Ref
| Expression |
| 1 | | vieta.f |
. . 3
⊢ 𝐹 = (𝑀 Σg (𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛))))) |
| 2 | 1 | fveq2i 6834 |
. 2
⊢ (𝐷‘𝐹) = (𝐷‘(𝑀 Σg (𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛)))))) |
| 3 | | vietadeg1.1 |
. . . 4
⊢ 𝐷 = (deg1‘𝑅) |
| 4 | | vieta.w |
. . . 4
⊢ 𝑊 = (Poly1‘𝑅) |
| 5 | | eqid 2733 |
. . . 4
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 6 | | vieta.m |
. . . 4
⊢ 𝑀 = (mulGrp‘𝑊) |
| 7 | | eqid 2733 |
. . . 4
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 8 | | vieta.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 9 | | vieta.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 10 | | vieta.3 |
. . . . . . 7
⊢ − =
(-g‘𝑊) |
| 11 | 9 | idomringd 20652 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 12 | 4 | ply1ring 22179 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
| 13 | | ringgrp 20164 |
. . . . . . . . 9
⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) |
| 14 | 11, 12, 13 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ Grp) |
| 15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝑊 ∈ Grp) |
| 16 | | vieta.x |
. . . . . . . . . 10
⊢ 𝑋 = (var1‘𝑅) |
| 17 | 16, 4, 5 | vr1cl 22149 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
| 18 | 11, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 19 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝑋 ∈ (Base‘𝑊)) |
| 20 | | vieta.a |
. . . . . . . 8
⊢ 𝐴 = (algSc‘𝑊) |
| 21 | | eqid 2733 |
. . . . . . . 8
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 22 | | eqid 2733 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 23 | 9 | idomcringd 20651 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 24 | 4 | ply1assa 22131 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑊 ∈ AssAlg) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ AssAlg) |
| 26 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝑊 ∈ AssAlg) |
| 27 | | vieta.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍:𝐼⟶𝐵) |
| 28 | 27 | ffvelcdmda 7026 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑍‘𝑛) ∈ 𝐵) |
| 29 | | vieta.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 30 | 4 | ply1sca 22184 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ IDomn → 𝑅 = (Scalar‘𝑊)) |
| 31 | 9, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 = (Scalar‘𝑊)) |
| 32 | 31 | fveq2d 6835 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑊))) |
| 33 | 29, 32 | eqtrid 2780 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘𝑊))) |
| 34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝐵 = (Base‘(Scalar‘𝑊))) |
| 35 | 28, 34 | eleqtrd 2835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑍‘𝑛) ∈ (Base‘(Scalar‘𝑊))) |
| 36 | 20, 21, 22, 26, 35 | asclelbas 21830 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐴‘(𝑍‘𝑛)) ∈ (Base‘𝑊)) |
| 37 | 5, 10, 15, 19, 36 | grpsubcld 33051 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑋 − (𝐴‘(𝑍‘𝑛))) ∈ (Base‘𝑊)) |
| 38 | 9 | idomdomd 20650 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 39 | | domnnzr 20630 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 41 | 3, 4, 16, 40 | deg1vr 33601 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘𝑋) = 1) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) = 1) |
| 43 | 3, 4, 5 | deg1cl 26035 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ (Base‘𝑊) → (𝐷‘𝑋) ∈ (ℕ0 ∪
{-∞})) |
| 44 | 18, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐷‘𝑋) ∈ (ℕ0 ∪
{-∞})) |
| 45 | 44 | nn0mnfxrd 32759 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘𝑋) ∈
ℝ*) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) ∈
ℝ*) |
| 47 | 42, 46 | eqeltrrd 2834 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → 1 ∈
ℝ*) |
| 48 | 44 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) ∈ (ℕ0 ∪
{-∞})) |
| 49 | | 0zd 12491 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → 0 ∈ ℤ) |
| 50 | 15 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → 𝑊 ∈ Grp) |
| 51 | 19 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → 𝑋 ∈ (Base‘𝑊)) |
| 52 | 36 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐴‘(𝑍‘𝑛)) ∈ (Base‘𝑊)) |
| 53 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) |
| 54 | 5, 7, 10 | grpsubeq0 18947 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑊) ∧ (𝐴‘(𝑍‘𝑛)) ∈ (Base‘𝑊)) → ((𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊) ↔ 𝑋 = (𝐴‘(𝑍‘𝑛)))) |
| 55 | 54 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑊) ∧ (𝐴‘(𝑍‘𝑛)) ∈ (Base‘𝑊)) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → 𝑋 = (𝐴‘(𝑍‘𝑛))) |
| 56 | 50, 51, 52, 53, 55 | syl31anc 1375 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → 𝑋 = (𝐴‘(𝑍‘𝑛))) |
| 57 | 56 | fveq2d 6835 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) = (𝐷‘(𝐴‘(𝑍‘𝑛)))) |
| 58 | 11 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 59 | 3, 4, 29, 20 | deg1sclle 26064 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ (𝑍‘𝑛) ∈ 𝐵) → (𝐷‘(𝐴‘(𝑍‘𝑛))) ≤ 0) |
| 60 | 58, 28, 59 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐷‘(𝐴‘(𝑍‘𝑛))) ≤ 0) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘(𝐴‘(𝑍‘𝑛))) ≤ 0) |
| 62 | 57, 61 | eqbrtrd 5117 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) ≤ 0) |
| 63 | | degltp1le 26025 |
. . . . . . . . . . . . . 14
⊢ (((𝐷‘𝑋) ∈ (ℕ0 ∪
{-∞}) ∧ 0 ∈ ℤ) → ((𝐷‘𝑋) < (0 + 1) ↔ (𝐷‘𝑋) ≤ 0)) |
| 64 | 63 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ ((((𝐷‘𝑋) ∈ (ℕ0 ∪
{-∞}) ∧ 0 ∈ ℤ) ∧ (𝐷‘𝑋) ≤ 0) → (𝐷‘𝑋) < (0 + 1)) |
| 65 | 48, 49, 62, 64 | syl21anc 837 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) < (0 + 1)) |
| 66 | | 0p1e1 12253 |
. . . . . . . . . . . 12
⊢ (0 + 1) =
1 |
| 67 | 65, 66 | breqtrdi 5136 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) < 1) |
| 68 | 46, 47, 67 | xrgtned 13069 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → 1 ≠ (𝐷‘𝑋)) |
| 69 | 68 | necomd 2984 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → (𝐷‘𝑋) ≠ 1) |
| 70 | 69 | neneqd 2934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) → ¬ (𝐷‘𝑋) = 1) |
| 71 | 42, 70 | pm2.65da 816 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → ¬ (𝑋 − (𝐴‘(𝑍‘𝑛))) = (0g‘𝑊)) |
| 72 | 71 | neqned 2936 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑋 − (𝐴‘(𝑍‘𝑛))) ≠ (0g‘𝑊)) |
| 73 | 37, 72 | eldifsnd 4740 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑋 − (𝐴‘(𝑍‘𝑛))) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 74 | 73 | fmpttd 7057 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛)))):𝐼⟶((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 75 | 3, 4, 5, 6, 7, 8, 9, 74 | deg1prod 33592 |
. . 3
⊢ (𝜑 → (𝐷‘(𝑀 Σg (𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛)))))) = Σ𝑘 ∈ 𝐼 (𝐷‘((𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛))))‘𝑘))) |
| 76 | | eqid 2733 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛)))) = (𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛)))) |
| 77 | | 2fveq3 6836 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝐴‘(𝑍‘𝑛)) = (𝐴‘(𝑍‘𝑘))) |
| 78 | 77 | oveq2d 7371 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝑋 − (𝐴‘(𝑍‘𝑛))) = (𝑋 − (𝐴‘(𝑍‘𝑘)))) |
| 79 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
| 80 | | ovexd 7390 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑋 − (𝐴‘(𝑍‘𝑘))) ∈ V) |
| 81 | 76, 78, 79, 80 | fvmptd3 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛))))‘𝑘) = (𝑋 − (𝐴‘(𝑍‘𝑘)))) |
| 82 | 81 | fveq2d 6835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐷‘((𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛))))‘𝑘)) = (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑘))))) |
| 83 | 3, 4, 5 | deg1xrcl 26034 |
. . . . . . . . . . . . . 14
⊢ ((𝐴‘(𝑍‘𝑛)) ∈ (Base‘𝑊) → (𝐷‘(𝐴‘(𝑍‘𝑛))) ∈
ℝ*) |
| 84 | 36, 83 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐷‘(𝐴‘(𝑍‘𝑛))) ∈
ℝ*) |
| 85 | | 0xr 11170 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
| 86 | 85 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 ∈
ℝ*) |
| 87 | | 1xr 11182 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ* |
| 88 | 87 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 1 ∈
ℝ*) |
| 89 | | 0lt1 11650 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
| 90 | 89 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 < 1) |
| 91 | 84, 86, 88, 60, 90 | xrlelttrd 13065 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐷‘(𝐴‘(𝑍‘𝑛))) < 1) |
| 92 | 41 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐷‘𝑋) = 1) |
| 93 | 91, 92 | breqtrrd 5123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐷‘(𝐴‘(𝑍‘𝑛))) < (𝐷‘𝑋)) |
| 94 | 4, 3, 58, 5, 10, 19, 36, 93 | deg1sub 26060 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑛)))) = (𝐷‘𝑋)) |
| 95 | 94, 92 | eqtrd 2768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑛)))) = 1) |
| 96 | 95 | ralrimiva 3125 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ 𝐼 (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑛)))) = 1) |
| 97 | 78 | fveqeq2d 6839 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑛)))) = 1 ↔ (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑘)))) = 1)) |
| 98 | 97 | cbvralvw 3211 |
. . . . . . . 8
⊢
(∀𝑛 ∈
𝐼 (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑛)))) = 1 ↔ ∀𝑘 ∈ 𝐼 (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑘)))) = 1) |
| 99 | 96, 98 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝐼 (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑘)))) = 1) |
| 100 | 99 | r19.21bi 3225 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐷‘(𝑋 − (𝐴‘(𝑍‘𝑘)))) = 1) |
| 101 | 82, 100 | eqtrd 2768 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐷‘((𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛))))‘𝑘)) = 1) |
| 102 | 101 | sumeq2dv 15616 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ 𝐼 (𝐷‘((𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛))))‘𝑘)) = Σ𝑘 ∈ 𝐼 1) |
| 103 | | 1cnd 11118 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
| 104 | | fsumconst 15704 |
. . . . 5
⊢ ((𝐼 ∈ Fin ∧ 1 ∈
ℂ) → Σ𝑘
∈ 𝐼 1 =
((♯‘𝐼) ·
1)) |
| 105 | 8, 103, 104 | syl2anc 584 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ 𝐼 1 = ((♯‘𝐼) · 1)) |
| 106 | | hashcl 14270 |
. . . . . . . 8
⊢ (𝐼 ∈ Fin →
(♯‘𝐼) ∈
ℕ0) |
| 107 | 8, 106 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐼) ∈
ℕ0) |
| 108 | 107 | nn0cnd 12455 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐼) ∈
ℂ) |
| 109 | 108 | mulridd 11140 |
. . . . 5
⊢ (𝜑 → ((♯‘𝐼) · 1) =
(♯‘𝐼)) |
| 110 | | vieta.h |
. . . . 5
⊢ 𝐻 = (♯‘𝐼) |
| 111 | 109, 110 | eqtr4di 2786 |
. . . 4
⊢ (𝜑 → ((♯‘𝐼) · 1) = 𝐻) |
| 112 | 102, 105,
111 | 3eqtrd 2772 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝐼 (𝐷‘((𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛))))‘𝑘)) = 𝐻) |
| 113 | 75, 112 | eqtrd 2768 |
. 2
⊢ (𝜑 → (𝐷‘(𝑀 Σg (𝑛 ∈ 𝐼 ↦ (𝑋 − (𝐴‘(𝑍‘𝑛)))))) = 𝐻) |
| 114 | 2, 113 | eqtrid 2780 |
1
⊢ (𝜑 → (𝐷‘𝐹) = 𝐻) |