MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrrege0 Structured version   Visualization version   GIF version

Theorem xrrege0 12546
Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xrrege0 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)

Proof of Theorem xrrege0
StepHypRef Expression
1 ge0gtmnf 12544 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
21ad2ant2r 745 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → -∞ < 𝐴)
3 simprr 771 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴𝐵)
42, 3jca 514 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → (-∞ < 𝐴𝐴𝐵))
5 xrre 12541 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
64, 5syldan 593 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114   class class class wbr 5042  cr 10514  0cc0 10515  -∞cmnf 10651  *cxr 10652   < clt 10653  cle 10654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-addrcl 10576  ax-rnegex 10586  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659
This theorem is referenced by:  psmetlecl  22901  xmetlecl  22932  prdsxmetlem  22954  stdbdmet  23102  stdbdmopn  23104  bddnghm  23311  nmoid  23327  xrsmopn  23396  metdsre  23437  metnrmlem1a  23442  ovollecl  24066  itg2lecl  24321  probmeasb  31696  heicant  34968  mblfinlem3  34972  mblfinlem4  34973
  Copyright terms: Public domain W3C validator