| Step | Hyp | Ref
| Expression |
| 1 | | nnnn0 9256 |
. . . 4
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
| 2 | | 8nn 9158 |
. . . . 5
⊢ 8 ∈
ℕ |
| 3 | | nnq 9707 |
. . . . 5
⊢ (8 ∈
ℕ → 8 ∈ ℚ) |
| 4 | 2, 3 | mp1i 10 |
. . . 4
⊢ (𝑃 ∈ ℕ → 8 ∈
ℚ) |
| 5 | 2 | nngt0i 9020 |
. . . . 5
⊢ 0 <
8 |
| 6 | 5 | a1i 9 |
. . . 4
⊢ (𝑃 ∈ ℕ → 0 <
8) |
| 7 | | modqmuladdnn0 10460 |
. . . 4
⊢ ((𝑃 ∈ ℕ0
∧ 8 ∈ ℚ ∧ 0 < 8) → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7))) |
| 8 | 1, 4, 6, 7 | syl3anc 1249 |
. . 3
⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0
𝑃 = ((𝑘 · 8) + 7))) |
| 9 | | simpr 110 |
. . . . 5
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
| 10 | | nn0cn 9259 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 11 | | 8cn 9076 |
. . . . . . . . . . . 12
⊢ 8 ∈
ℂ |
| 12 | 11 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ 8 ∈ ℂ) |
| 13 | 10, 12 | mulcomd 8048 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑘 · 8) = (8
· 𝑘)) |
| 14 | 13 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑘 · 8) = (8
· 𝑘)) |
| 15 | 14 | oveq1d 5937 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ ((𝑘 · 8) + 7)
= ((8 · 𝑘) +
7)) |
| 16 | 15 | eqeq2d 2208 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑃 = ((𝑘 · 8) + 7) ↔ 𝑃 = ((8 · 𝑘) + 7))) |
| 17 | 16 | biimpa 296 |
. . . . . 6
⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑃 = ((8 · 𝑘) + 7)) |
| 18 | | 2lgslem2.n |
. . . . . . 7
⊢ 𝑁 = (((𝑃 − 1) / 2) −
(⌊‘(𝑃 /
4))) |
| 19 | 18 | 2lgslem3d 15337 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 = ((8 ·
𝑘) + 7)) → 𝑁 = ((2 · 𝑘) + 2)) |
| 20 | 9, 17, 19 | syl2an2r 595 |
. . . . 5
⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑁 = ((2 · 𝑘) + 2)) |
| 21 | | oveq1 5929 |
. . . . . 6
⊢ (𝑁 = ((2 · 𝑘) + 2) → (𝑁 mod 2) = (((2 · 𝑘) + 2) mod 2)) |
| 22 | | 2t1e2 9144 |
. . . . . . . . . . . 12
⊢ (2
· 1) = 2 |
| 23 | 22 | eqcomi 2200 |
. . . . . . . . . . 11
⊢ 2 = (2
· 1) |
| 24 | 23 | a1i 9 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ 2 = (2 · 1)) |
| 25 | 24 | oveq2d 5938 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ ((2 · 𝑘) + 2)
= ((2 · 𝑘) + (2
· 1))) |
| 26 | | 2cnd 9063 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ 2 ∈ ℂ) |
| 27 | | 1cnd 8042 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ 1 ∈ ℂ) |
| 28 | | adddi 8011 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑘
∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1))) |
| 29 | 28 | eqcomd 2202 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ 𝑘
∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1))) |
| 30 | 26, 10, 27, 29 | syl3anc 1249 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ ((2 · 𝑘) + (2
· 1)) = (2 · (𝑘 + 1))) |
| 31 | 10, 27 | addcld 8046 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℂ) |
| 32 | 26, 31 | mulcomd 8048 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (2 · (𝑘 + 1))
= ((𝑘 + 1) ·
2)) |
| 33 | 25, 30, 32 | 3eqtrd 2233 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((2 · 𝑘) + 2)
= ((𝑘 + 1) ·
2)) |
| 34 | 33 | oveq1d 5937 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (((2 · 𝑘) +
2) mod 2) = (((𝑘 + 1)
· 2) mod 2)) |
| 35 | | peano2nn0 9289 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
| 36 | 35 | nn0zd 9446 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℤ) |
| 37 | | 2nn 9152 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 38 | | nnq 9707 |
. . . . . . . . 9
⊢ (2 ∈
ℕ → 2 ∈ ℚ) |
| 39 | 37, 38 | mp1i 10 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 2 ∈ ℚ) |
| 40 | 37 | nngt0i 9020 |
. . . . . . . . 9
⊢ 0 <
2 |
| 41 | 40 | a1i 9 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 0 < 2) |
| 42 | | mulqmod0 10422 |
. . . . . . . 8
⊢ (((𝑘 + 1) ∈ ℤ ∧ 2
∈ ℚ ∧ 0 < 2) → (((𝑘 + 1) · 2) mod 2) =
0) |
| 43 | 36, 39, 41, 42 | syl3anc 1249 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (((𝑘 + 1) ·
2) mod 2) = 0) |
| 44 | 34, 43 | eqtrd 2229 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (((2 · 𝑘) +
2) mod 2) = 0) |
| 45 | 21, 44 | sylan9eqr 2251 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 = ((2 ·
𝑘) + 2)) → (𝑁 mod 2) = 0) |
| 46 | 9, 20, 45 | syl2an2r 595 |
. . . 4
⊢ (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
∧ 𝑃 = ((𝑘 · 8) + 7)) → (𝑁 mod 2) = 0) |
| 47 | 46 | rexlimdva2 2617 |
. . 3
⊢ (𝑃 ∈ ℕ →
(∃𝑘 ∈
ℕ0 𝑃 =
((𝑘 · 8) + 7) →
(𝑁 mod 2) =
0)) |
| 48 | 8, 47 | syld 45 |
. 2
⊢ (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → (𝑁 mod 2) = 0)) |
| 49 | 48 | imp 124 |
1
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0) |