| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cvgratgt0 | GIF version | ||
| Description: Ratio test for convergence of a complex infinite series. If the ratio 𝐴 of the absolute values of successive terms in an infinite sequence 𝐹 is less than 1 for all terms beyond some index 𝐵, then the infinite sum of the terms of 𝐹 converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.) |
| Ref | Expression |
|---|---|
| cvgrat.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| cvgrat.2 | ⊢ 𝑊 = (ℤ≥‘𝑁) |
| cvgrat.3 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| cvgrat.4 | ⊢ (𝜑 → 𝐴 < 1) |
| cvgrat.gt0 | ⊢ (𝜑 → 0 < 𝐴) |
| cvgrat.5 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| cvgrat.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| cvgrat.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| Ref | Expression |
|---|---|
| cvgratgt0 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvgrat.2 | . . 3 ⊢ 𝑊 = (ℤ≥‘𝑁) | |
| 2 | cvgrat.5 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 3 | eluzelz 9656 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 4 | cvgrat.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleq2s 2299 | . . . 4 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| 6 | 2, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | cvgrat.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 8 | cvgrat.4 | . . 3 ⊢ (𝜑 → 𝐴 < 1) | |
| 9 | cvgrat.gt0 | . . 3 ⊢ (𝜑 → 0 < 𝐴) | |
| 10 | 1 | eleq2i 2271 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑊 ↔ 𝑘 ∈ (ℤ≥‘𝑁)) |
| 11 | 10 | biimpi 120 | . . . . . 6 ⊢ (𝑘 ∈ 𝑊 → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 12 | 2, 4 | eleqtrdi 2297 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 13 | uztrn 9664 | . . . . . 6 ⊢ ((𝑘 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 14 | 11, 12, 13 | syl2anr 290 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 15 | 14, 4 | eleqtrrdi 2298 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
| 16 | cvgrat.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 17 | 15, 16 | syldan 282 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ∈ ℂ) |
| 18 | cvgrat.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) | |
| 19 | 1, 6, 7, 8, 9, 17, 18 | cvgratz 11785 | . 2 ⊢ (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 20 | 4, 2, 16 | iserex 11592 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
| 21 | 19, 20 | mpbird 167 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 dom cdm 4674 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ℝcr 7923 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 < clt 8106 ≤ cle 8107 ℤcz 9371 ℤ≥cuz 9647 seqcseq 10590 abscabs 11250 ⇝ cli 11531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: efcllemp 11911 |
| Copyright terms: Public domain | W3C validator |