| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divcanap3d | GIF version | ||
| Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.) |
| Ref | Expression |
|---|---|
| divcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divclapd.3 | ⊢ (𝜑 → 𝐵 # 0) |
| Ref | Expression |
|---|---|
| divcanap3d | ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divclapd.3 | . 2 ⊢ (𝜑 → 𝐵 # 0) | |
| 4 | divcanap3 8728 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5923 ℂcc 7880 0cc0 7882 · cmul 7887 # cap 8611 / cdiv 8702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 |
| This theorem is referenced by: prodgt0gt0 8881 ltdivmul 8906 ledivmul 8907 ltdiv23 8922 lediv23 8923 zneo 9430 2tnp1ge0ge0 10394 modqdiffl 10430 zesq 10753 bcn1 10853 crre 11025 resqrexlemover 11178 resqrexlemcalc1 11182 max0addsup 11387 eirraplem 11945 ltoddhalfle 12061 flodddiv4 12104 bitsp1e 12120 bitsp1o 12121 sqrt2irrlem 12340 pythagtriplem12 12455 pythagtriplem14 12457 pythagtriplem15 12458 pythagtriplem16 12459 pythagtriplem17 12460 fldivp1 12528 4sqlem17 12587 dvrecap 14975 perfectlem2 15262 lgsquadlem1 15344 lgsquadlem2 15345 2lgslem1c 15357 2lgslem3a 15360 |
| Copyright terms: Public domain | W3C validator |