ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ushgredgedgloop Unicode version

Theorem ushgredgedgloop 16034
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex  N and the set of loops at this vertex  N. (Contributed by AV, 11-Dec-2020.) (Revised by AV, 6-Jul-2022.)
Hypotheses
Ref Expression
ushgredgedgloop.e  |-  E  =  (Edg `  G )
ushgredgedgloop.i  |-  I  =  (iEdg `  G )
ushgredgedgloop.a  |-  A  =  { i  e.  dom  I  |  ( I `  i )  =  { N } }
ushgredgedgloop.b  |-  B  =  { e  e.  E  |  e  =  { N } }
ushgredgedgloop.f  |-  F  =  ( x  e.  A  |->  ( I `  x
) )
Assertion
Ref Expression
ushgredgedgloop  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F : A -1-1-onto-> B )
Distinct variable groups:    B, e    e, E, i    e, G, i, x    e, I, i, x    e, N, i, x    e, V, i, x
Allowed substitution hints:    A( x, e, i)    B( x, i)    E( x)    F( x, e, i)

Proof of Theorem ushgredgedgloop
Dummy variables  f  j  p  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
2 ushgredgedgloop.i . . . . 5  |-  I  =  (iEdg `  G )
31, 2ushgrfm 15882 . . . 4  |-  ( G  e. USHGraph  ->  I : dom  I -1-1-> { p  e.  ~P (Vtx `  G )  |  E. w  w  e.  p } )
43adantr 276 . . 3  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  I : dom  I -1-1-> { p  e.  ~P (Vtx `  G
)  |  E. w  w  e.  p }
)
5 ssrab2 3309 . . 3  |-  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  C_  dom  I
6 f1ores 5589 . . 3  |-  ( ( I : dom  I -1-1-> { p  e.  ~P (Vtx `  G )  |  E. w  w  e.  p }  /\  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  C_  dom  I )  ->  (
I  |`  { i  e. 
dom  I  |  ( I `  i )  =  { N } } ) : {
i  e.  dom  I  |  ( I `  i )  =  { N } } -1-1-onto-> ( I " {
i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
74, 5, 6sylancl 413 . 2  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
I  |`  { i  e. 
dom  I  |  ( I `  i )  =  { N } } ) : {
i  e.  dom  I  |  ( I `  i )  =  { N } } -1-1-onto-> ( I " {
i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
8 ushgredgedgloop.f . . . . 5  |-  F  =  ( x  e.  A  |->  ( I `  x
) )
9 ushgredgedgloop.a . . . . . . 7  |-  A  =  { i  e.  dom  I  |  ( I `  i )  =  { N } }
109a1i 9 . . . . . 6  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  A  =  { i  e.  dom  I  |  ( I `  i )  =  { N } } )
11 eqidd 2230 . . . . . 6  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  x  e.  A )  ->  (
I `  x )  =  ( I `  x ) )
1210, 11mpteq12dva 4165 . . . . 5  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
x  e.  A  |->  ( I `  x ) )  =  ( x  e.  { i  e. 
dom  I  |  ( I `  i )  =  { N } }  |->  ( I `  x ) ) )
138, 12eqtrid 2274 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F  =  ( x  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  |->  ( I `
 x ) ) )
14 f1f 5533 . . . . . . 7  |-  ( I : dom  I -1-1-> {
p  e.  ~P (Vtx `  G )  |  E. w  w  e.  p }  ->  I : dom  I
--> { p  e.  ~P (Vtx `  G )  |  E. w  w  e.  p } )
153, 14syl 14 . . . . . 6  |-  ( G  e. USHGraph  ->  I : dom  I
--> { p  e.  ~P (Vtx `  G )  |  E. w  w  e.  p } )
165a1i 9 . . . . . 6  |-  ( G  e. USHGraph  ->  { i  e. 
dom  I  |  ( I `  i )  =  { N } }  C_  dom  I )
1715, 16feqresmpt 5690 . . . . 5  |-  ( G  e. USHGraph  ->  ( I  |`  { i  e.  dom  I  |  ( I `  i )  =  { N } } )  =  ( x  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  |->  ( I `
 x ) ) )
1817adantr 276 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
I  |`  { i  e. 
dom  I  |  ( I `  i )  =  { N } } )  =  ( x  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  |->  ( I `
 x ) ) )
1913, 18eqtr4d 2265 . . 3  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F  =  ( I  |`  { i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
20 ushgruhgr 15888 . . . . . . . 8  |-  ( G  e. USHGraph  ->  G  e. UHGraph )
21 eqid 2229 . . . . . . . . 9  |-  (iEdg `  G )  =  (iEdg `  G )
2221uhgrfun 15885 . . . . . . . 8  |-  ( G  e. UHGraph  ->  Fun  (iEdg `  G
) )
2320, 22syl 14 . . . . . . 7  |-  ( G  e. USHGraph  ->  Fun  (iEdg `  G
) )
242funeqi 5339 . . . . . . 7  |-  ( Fun  I  <->  Fun  (iEdg `  G
) )
2523, 24sylibr 134 . . . . . 6  |-  ( G  e. USHGraph  ->  Fun  I )
2625adantr 276 . . . . 5  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  Fun  I )
27 dfimafn 5684 . . . . 5  |-  ( ( Fun  I  /\  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  C_  dom  I )  ->  (
I " { i  e.  dom  I  |  ( I `  i
)  =  { N } } )  =  {
e  |  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e } )
2826, 5, 27sylancl 413 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
I " { i  e.  dom  I  |  ( I `  i
)  =  { N } } )  =  {
e  |  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e } )
29 fveqeq2 5638 . . . . . . . . . 10  |-  ( i  =  j  ->  (
( I `  i
)  =  { N } 
<->  ( I `  j
)  =  { N } ) )
3029elrab 2959 . . . . . . . . 9  |-  ( j  e.  { i  e. 
dom  I  |  ( I `  i )  =  { N } } 
<->  ( j  e.  dom  I  /\  ( I `  j )  =  { N } ) )
31 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  dom  I  /\  ( I `  j
)  =  { N } )  ->  j  e.  dom  I )
32 fvelrn 5768 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  I  /\  j  e.  dom  I )  -> 
( I `  j
)  e.  ran  I
)
332eqcomi 2233 . . . . . . . . . . . . . . . . 17  |-  (iEdg `  G )  =  I
3433rneqi 4952 . . . . . . . . . . . . . . . 16  |-  ran  (iEdg `  G )  =  ran  I
3532, 34eleqtrrdi 2323 . . . . . . . . . . . . . . 15  |-  ( ( Fun  I  /\  j  e.  dom  I )  -> 
( I `  j
)  e.  ran  (iEdg `  G ) )
3626, 31, 35syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } ) )  -> 
( I `  j
)  e.  ran  (iEdg `  G ) )
37363adant3 1041 . . . . . . . . . . . . 13  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( I `  j
)  e.  ran  (iEdg `  G ) )
38 eleq1 2292 . . . . . . . . . . . . . . 15  |-  ( f  =  ( I `  j )  ->  (
f  e.  ran  (iEdg `  G )  <->  ( I `  j )  e.  ran  (iEdg `  G ) ) )
3938eqcoms 2232 . . . . . . . . . . . . . 14  |-  ( ( I `  j )  =  f  ->  (
f  e.  ran  (iEdg `  G )  <->  ( I `  j )  e.  ran  (iEdg `  G ) ) )
40393ad2ant3 1044 . . . . . . . . . . . . 13  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( f  e.  ran  (iEdg `  G )  <->  ( I `  j )  e.  ran  (iEdg `  G ) ) )
4137, 40mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
f  e.  ran  (iEdg `  G ) )
42 ushgredgedgloop.e . . . . . . . . . . . . . . . 16  |-  E  =  (Edg `  G )
43 edgvalg 15868 . . . . . . . . . . . . . . . 16  |-  ( G  e. USHGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
4442, 43eqtrid 2274 . . . . . . . . . . . . . . 15  |-  ( G  e. USHGraph  ->  E  =  ran  (iEdg `  G ) )
4544eleq2d 2299 . . . . . . . . . . . . . 14  |-  ( G  e. USHGraph  ->  ( f  e.  E  <->  f  e.  ran  (iEdg `  G ) ) )
4645adantr 276 . . . . . . . . . . . . 13  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
f  e.  E  <->  f  e.  ran  (iEdg `  G )
) )
47463ad2ant1 1042 . . . . . . . . . . . 12  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( f  e.  E  <->  f  e.  ran  (iEdg `  G ) ) )
4841, 47mpbird 167 . . . . . . . . . . 11  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
f  e.  E )
49 eqeq1 2236 . . . . . . . . . . . . . . 15  |-  ( ( I `  j )  =  f  ->  (
( I `  j
)  =  { N } 
<->  f  =  { N } ) )
5049biimpcd 159 . . . . . . . . . . . . . 14  |-  ( ( I `  j )  =  { N }  ->  ( ( I `  j )  =  f  ->  f  =  { N } ) )
5150adantl 277 . . . . . . . . . . . . 13  |-  ( ( j  e.  dom  I  /\  ( I `  j
)  =  { N } )  ->  (
( I `  j
)  =  f  -> 
f  =  { N } ) )
5251a1i 9 . . . . . . . . . . . 12  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
( j  e.  dom  I  /\  ( I `  j )  =  { N } )  ->  (
( I `  j
)  =  f  -> 
f  =  { N } ) ) )
53523imp 1217 . . . . . . . . . . 11  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
f  =  { N } )
5448, 53jca 306 . . . . . . . . . 10  |-  ( ( ( G  e. USHGraph  /\  N  e.  V )  /\  (
j  e.  dom  I  /\  ( I `  j
)  =  { N } )  /\  (
I `  j )  =  f )  -> 
( f  e.  E  /\  f  =  { N } ) )
55543exp 1226 . . . . . . . . 9  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
( j  e.  dom  I  /\  ( I `  j )  =  { N } )  ->  (
( I `  j
)  =  f  -> 
( f  e.  E  /\  f  =  { N } ) ) ) )
5630, 55biimtrid 152 . . . . . . . 8  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ->  ( ( I `  j )  =  f  ->  (
f  e.  E  /\  f  =  { N } ) ) ) )
5756rexlimdv 2647 . . . . . . 7  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  ( E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f  ->  ( f  e.  E  /\  f  =  { N } ) ) )
5823funfnd 5349 . . . . . . . . . . . 12  |-  ( G  e. USHGraph  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
59 fvelrnb 5683 . . . . . . . . . . . 12  |-  ( (iEdg `  G )  Fn  dom  (iEdg `  G )  -> 
( f  e.  ran  (iEdg `  G )  <->  E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  f ) )
6058, 59syl 14 . . . . . . . . . . 11  |-  ( G  e. USHGraph  ->  ( f  e. 
ran  (iEdg `  G )  <->  E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j
)  =  f ) )
6133dmeqi 4924 . . . . . . . . . . . . . . . . . . . . . 22  |-  dom  (iEdg `  G )  =  dom  I
6261eleq2i 2296 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  dom  (iEdg `  G )  <->  j  e.  dom  I )
6362biimpi 120 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  dom  (iEdg `  G )  ->  j  e.  dom  I )
6463adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  j  e.  dom  I )
6564adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  j  e.  dom  I )
6633fveq1i 5630 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (iEdg `  G ) `  j
)  =  ( I `
 j )
6766eqeq2i 2240 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  =  ( (iEdg `  G ) `  j
)  <->  f  =  ( I `  j ) )
6867biimpi 120 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  ( (iEdg `  G ) `  j
)  ->  f  =  ( I `  j
) )
6968eqcoms 2232 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (iEdg `  G ) `  j )  =  f  ->  f  =  ( I `  j ) )
7069eqeq1d 2238 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (iEdg `  G ) `  j )  =  f  ->  ( f  =  { N }  <->  ( I `  j )  =  { N } ) )
7170biimpcd 159 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  { N }  ->  ( ( (iEdg `  G ) `  j
)  =  f  -> 
( I `  j
)  =  { N } ) )
7271adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( ( (iEdg `  G ) `  j
)  =  f  -> 
( I `  j
)  =  { N } ) )
7372adantld 278 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  ( I `  j )  =  { N } ) )
7473imp 124 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( I `  j )  =  { N } )
7565, 74jca 306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( j  e. 
dom  I  /\  (
I `  j )  =  { N } ) )
7675, 30sylibr 134 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } } )
7766eqeq1i 2237 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (iEdg `  G ) `  j )  =  f  <-> 
( I `  j
)  =  f )
7877biimpi 120 . . . . . . . . . . . . . . . . . 18  |-  ( ( (iEdg `  G ) `  j )  =  f  ->  ( I `  j )  =  f )
7978adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  ( I `  j )  =  f )
8079adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( I `  j )  =  f )
8176, 80jca 306 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. USHGraph  /\  f  =  { N } )  /\  ( j  e. 
dom  (iEdg `  G )  /\  ( (iEdg `  G
) `  j )  =  f ) )  ->  ( j  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  /\  (
I `  j )  =  f ) )
8281ex 115 . . . . . . . . . . . . . 14  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( ( j  e.  dom  (iEdg `  G )  /\  (
(iEdg `  G ) `  j )  =  f )  ->  ( j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  /\  (
I `  j )  =  f ) ) )
8382reximdv2 2629 . . . . . . . . . . . . 13  |-  ( ( G  e. USHGraph  /\  f  =  { N } )  ->  ( E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  f  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f ) )
8483ex 115 . . . . . . . . . . . 12  |-  ( G  e. USHGraph  ->  ( f  =  { N }  ->  ( E. j  e.  dom  (iEdg `  G ) ( (iEdg `  G ) `  j )  =  f  ->  E. j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) ) )
8584com23 78 . . . . . . . . . . 11  |-  ( G  e. USHGraph  ->  ( E. j  e.  dom  (iEdg `  G
) ( (iEdg `  G ) `  j
)  =  f  -> 
( f  =  { N }  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) ) )
8660, 85sylbid 150 . . . . . . . . . 10  |-  ( G  e. USHGraph  ->  ( f  e. 
ran  (iEdg `  G )  ->  ( f  =  { N }  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) ) )
8745, 86sylbid 150 . . . . . . . . 9  |-  ( G  e. USHGraph  ->  ( f  e.  E  ->  ( f  =  { N }  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f ) ) )
8887impd 254 . . . . . . . 8  |-  ( G  e. USHGraph  ->  ( ( f  e.  E  /\  f  =  { N } )  ->  E. j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) )
8988adantr 276 . . . . . . 7  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
( f  e.  E  /\  f  =  { N } )  ->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f ) )
9057, 89impbid 129 . . . . . 6  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  ( E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f  <-> 
( f  e.  E  /\  f  =  { N } ) ) )
91 vex 2802 . . . . . . 7  |-  f  e. 
_V
92 eqeq2 2239 . . . . . . . 8  |-  ( e  =  f  ->  (
( I `  j
)  =  e  <->  ( I `  j )  =  f ) )
9392rexbidv 2531 . . . . . . 7  |-  ( e  =  f  ->  ( E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  e  <->  E. j  e.  { i  e.  dom  I  |  ( I `  i
)  =  { N } }  ( I `  j )  =  f ) )
9491, 93elab 2947 . . . . . 6  |-  ( f  e.  { e  |  E. j  e.  {
i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e }  <->  E. j  e.  { i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  f )
95 eqeq1 2236 . . . . . . 7  |-  ( e  =  f  ->  (
e  =  { N } 
<->  f  =  { N } ) )
96 ushgredgedgloop.b . . . . . . 7  |-  B  =  { e  e.  E  |  e  =  { N } }
9795, 96elrab2 2962 . . . . . 6  |-  ( f  e.  B  <->  ( f  e.  E  /\  f  =  { N } ) )
9890, 94, 973bitr4g 223 . . . . 5  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  (
f  e.  { e  |  E. j  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e }  <->  f  e.  B ) )
9998eqrdv 2227 . . . 4  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  { e  |  E. j  e. 
{ i  e.  dom  I  |  ( I `  i )  =  { N } }  ( I `
 j )  =  e }  =  B )
10028, 99eqtr2d 2263 . . 3  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  B  =  ( I " { i  e.  dom  I  |  ( I `  i )  =  { N } } ) )
10119, 10, 100f1oeq123d 5568 . 2  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  ( F : A -1-1-onto-> B  <->  ( I  |`  { i  e.  dom  I  |  ( I `  i )  =  { N } } ) : { i  e.  dom  I  |  ( I `  i )  =  { N } } -1-1-onto-> ( I " {
i  e.  dom  I  |  ( I `  i )  =  { N } } ) ) )
1027, 101mpbird 167 1  |-  ( ( G  e. USHGraph  /\  N  e.  V )  ->  F : A -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   {crab 2512    C_ wss 3197   ~Pcpw 3649   {csn 3666    |-> cmpt 4145   dom cdm 4719   ran crn 4720    |` cres 4721   "cima 4722   Fun wfun 5312    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  Edgcedg 15866  UHGraphcuhgr 15875  USHGraphcushgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-uhgrm 15877  df-ushgrm 15878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator