ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uspgr2wlkeq Unicode version

Theorem uspgr2wlkeq 16076
Description: Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
uspgr2wlkeq  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) ) )
Distinct variable groups:    y, A    y, B    y, G    y, N

Proof of Theorem uspgr2wlkeq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3anan32 1013 . . 3  |-  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
)  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  <-> 
( ( N  =  ( `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A ) `
 y )  =  ( ( 1st `  B
) `  y )
) )
21a1i 9 . 2  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( N  =  ( `  ( 1st `  B ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A ) `
 y )  =  ( ( 1st `  B
) `  y )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) )  <->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) ) )
3 wlkeq 16065 . . . 4  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A ) `
 y )  =  ( ( 1st `  B
) `  y )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) ) )
433expa 1227 . . 3  |-  ( ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A ) `
 y )  =  ( ( 1st `  B
) `  y )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) ) )
543adant1 1039 . 2  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A ) `
 y )  =  ( ( 1st `  B
) `  y )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) ) )
6 fzofzp1 10433 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  ( x  +  1 )  e.  ( 0 ... N
) )
76adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  x  e.  ( 0..^ N ) )  ->  ( x  +  1 )  e.  ( 0 ... N
) )
8 fveq2 5627 . . . . . . . . . . . . 13  |-  ( y  =  ( x  + 
1 )  ->  (
( 2nd `  A
) `  y )  =  ( ( 2nd `  A ) `  (
x  +  1 ) ) )
9 fveq2 5627 . . . . . . . . . . . . 13  |-  ( y  =  ( x  + 
1 )  ->  (
( 2nd `  B
) `  y )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
108, 9eqeq12d 2244 . . . . . . . . . . . 12  |-  ( y  =  ( x  + 
1 )  ->  (
( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  <->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
1110adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A ) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  x  e.  ( 0..^ N ) )  /\  y  =  ( x  +  1 ) )  ->  ( (
( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  <->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
127, 11rspcdv 2910 . . . . . . . . . 10  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  x  e.  ( 0..^ N ) )  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  ( ( 2nd `  A ) `  ( x  +  1
) )  =  ( ( 2nd `  B
) `  ( x  +  1 ) ) ) )
1312impancom 260 . . . . . . . . 9  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  ( x  e.  ( 0..^ N )  ->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
1413ralrimiv 2602 . . . . . . . 8  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  A. x  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( x  +  1 ) )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
15 fvoveq1 6024 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  A ) `  (
x  +  1 ) ) )
16 fvoveq1 6024 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( 2nd `  B
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
1715, 16eqeq12d 2244 . . . . . . . . 9  |-  ( y  =  x  ->  (
( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) )  <->  ( ( 2nd `  A ) `  (
x  +  1 ) )  =  ( ( 2nd `  B ) `
 ( x  + 
1 ) ) ) )
1817cbvralvw 2769 . . . . . . . 8  |-  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A ) `
 ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) )  <->  A. x  e.  (
0..^ N ) ( ( 2nd `  A
) `  ( x  +  1 ) )  =  ( ( 2nd `  B ) `  (
x  +  1 ) ) )
1914, 18sylibr 134 . . . . . . 7  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) ) )
20 fzossfz 10362 . . . . . . . . . 10  |-  ( 0..^ N )  C_  (
0 ... N )
21 ssralv 3288 . . . . . . . . . 10  |-  ( ( 0..^ N )  C_  ( 0 ... N
)  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) )
2220, 21mp1i 10 . . . . . . . . 9  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) )
23 r19.26 2657 . . . . . . . . . . 11  |-  ( A. y  e.  ( 0..^ N ) ( ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  ( ( 2nd `  A ) `  ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) ) )  <->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) ) ) )
24 preq12 3745 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  ( ( 2nd `  A ) `  ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) ) )  ->  { (
( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )
2524a1i 9 . . . . . . . . . . . 12  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( (
( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  ( ( 2nd `  A ) `  ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) ) )  ->  { (
( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )
2625ralimdv 2598 . . . . . . . . . . 11  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) ( ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  ( ( 2nd `  A ) `  ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) )
2723, 26biimtrrid 153 . . . . . . . . . 10  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( ( A. y  e.  (
0..^ N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  /\  A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) )
2827expd 258 . . . . . . . . 9  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A ) `
 y )  =  ( ( 2nd `  B
) `  y )  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) ) )
2922, 28syld 45 . . . . . . . 8  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A ) `
 ( y  +  1 ) )  =  ( ( 2nd `  B
) `  ( y  +  1 ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) ) )
3029imp 124 . . . . . . 7  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  A
) `  ( y  +  1 ) )  =  ( ( 2nd `  B ) `  (
y  +  1 ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) )
3119, 30mpd 13 . . . . . 6  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )
3231ex 115 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) } ) )
33 uspgrupgr 15979 . . . . . . . 8  |-  ( G  e. USPGraph  ->  G  e. UPGraph )
34 eqid 2229 . . . . . . . . . 10  |-  (Vtx `  G )  =  (Vtx
`  G )
35 eqid 2229 . . . . . . . . . 10  |-  (iEdg `  G )  =  (iEdg `  G )
36 eqid 2229 . . . . . . . . . 10  |-  ( 1st `  A )  =  ( 1st `  A )
37 eqid 2229 . . . . . . . . . 10  |-  ( 2nd `  A )  =  ( 2nd `  A )
3834, 35, 36, 37upgrwlkcompim 16073 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  A  e.  (Walks `  G )
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A
) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } ) )
3938ex 115 . . . . . . . 8  |-  ( G  e. UPGraph  ->  ( A  e.  (Walks `  G )  ->  ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } ) ) )
4033, 39syl 14 . . . . . . 7  |-  ( G  e. USPGraph  ->  ( A  e.  (Walks `  G )  ->  ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } ) ) )
41 eqid 2229 . . . . . . . . . 10  |-  ( 1st `  B )  =  ( 1st `  B )
42 eqid 2229 . . . . . . . . . 10  |-  ( 2nd `  B )  =  ( 2nd `  B )
4334, 35, 41, 42upgrwlkcompim 16073 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  B  e.  (Walks `  G )
)  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )
4443ex 115 . . . . . . . 8  |-  ( G  e. UPGraph  ->  ( B  e.  (Walks `  G )  ->  ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } ) ) )
4533, 44syl 14 . . . . . . 7  |-  ( G  e. USPGraph  ->  ( B  e.  (Walks `  G )  ->  ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } ) ) )
46 oveq2 6009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `  ( 1st `  B
) )  =  N  ->  ( 0..^ ( `  ( 1st `  B
) ) )  =  ( 0..^ N ) )
4746eqcoms 2232 . . . . . . . . . . . . . . . . . 18  |-  ( N  =  ( `  ( 1st `  B ) )  ->  ( 0..^ ( `  ( 1st `  B
) ) )  =  ( 0..^ N ) )
4847raleqdv 2734 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( `  ( 1st `  B ) )  ->  ( A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  <->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } ) )
49 oveq2 6009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `  ( 1st `  A
) )  =  N  ->  ( 0..^ ( `  ( 1st `  A
) ) )  =  ( 0..^ N ) )
5049eqcoms 2232 . . . . . . . . . . . . . . . . . 18  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( 0..^ ( `  ( 1st `  A
) ) )  =  ( 0..^ N ) )
5150raleqdv 2734 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  <->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } ) )
5248, 51bi2anan9r 609 . . . . . . . . . . . . . . . 16  |-  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( ( A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } )  <->  ( A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  /\  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } ) ) )
53 r19.26 2657 . . . . . . . . . . . . . . . . 17  |-  ( A. y  e.  ( 0..^ N ) ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  (
(iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  <->  ( A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } ) )
54 eqeq2 2239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  <-> 
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } ) )
55 eqeq2 2239 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  =  ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  ->  ( (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  <->  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) )
5655eqcoms 2232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  <-> 
( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
5756biimpd 144 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  ->  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) )
5854, 57biimtrdi 163 . . . . . . . . . . . . . . . . . . . 20  |-  ( { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  ->  ( ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) ) )
5958com13 80 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  ->  ( { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) ) )
6059imp 124 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  /\  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( { ( ( 2nd `  A ) `
 y ) ,  ( ( 2nd `  A
) `  ( y  +  1 ) ) }  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
) ) )
6160ral2imi 2595 . . . . . . . . . . . . . . . . 17  |-  ( A. y  e.  ( 0..^ N ) ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  (
(iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
6253, 61sylbir 135 . . . . . . . . . . . . . . . 16  |-  ( ( A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) } )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
6352, 62biimtrdi 163 . . . . . . . . . . . . . . 15  |-  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( ( A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) )
6463com12 30 . . . . . . . . . . . . . 14  |-  ( ( A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } )  ->  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) )
6564ex 115 . . . . . . . . . . . . 13  |-  ( A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) }  ->  ( A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  ->  (
( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
66653ad2ant3 1044 . . . . . . . . . . . 12  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } )  ->  ( A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  ->  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
6766com12 30 . . . . . . . . . . 11  |-  ( A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  ->  ( ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } )  -> 
( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
68673ad2ant3 1044 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } )  ->  ( (
( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  { ( ( 2nd `  B ) `  y
) ,  ( ( 2nd `  B ) `
 ( y  +  1 ) ) } )  ->  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
6968imp 124 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )  ->  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) }  =  { ( ( 2nd `  B ) `
 y ) ,  ( ( 2nd `  B
) `  ( y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) )
7069expd 258 . . . . . . . 8  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )  ->  ( N  =  ( `  ( 1st `  A ) )  -> 
( N  =  ( `  ( 1st `  B
) )  ->  ( A. y  e.  (
0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) )
7170a1i 9 . . . . . . 7  |-  ( G  e. USPGraph  ->  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G )  /\  A. y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) )  =  { ( ( 2nd `  A ) `  y
) ,  ( ( 2nd `  A ) `
 ( y  +  1 ) ) } )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
)  /\  A. y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  { ( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) } ) )  ->  ( N  =  ( `  ( 1st `  A ) )  -> 
( N  =  ( `  ( 1st `  B
) )  ->  ( A. y  e.  (
0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) ) )
7240, 45, 71syl2and 295 . . . . . 6  |-  ( G  e. USPGraph  ->  ( ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  ->  ( N  =  ( `  ( 1st `  A ) )  -> 
( N  =  ( `  ( 1st `  B
) )  ->  ( A. y  e.  (
0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) ) ) ) )
73723imp1 1244 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) { ( ( 2nd `  A
) `  y ) ,  ( ( 2nd `  A ) `  (
y  +  1 ) ) }  =  {
( ( 2nd `  B
) `  y ) ,  ( ( 2nd `  B ) `  (
y  +  1 ) ) }  ->  A. y  e.  ( 0..^ N ) ( (iEdg `  G
) `  ( ( 1st `  B ) `  y ) )  =  ( (iEdg `  G
) `  ( ( 1st `  A ) `  y ) ) ) )
74 eqcom 2231 . . . . . . 7  |-  ( ( (iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  <->  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
) )
7535uspgrf1oedg 15974 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-onto-> (Edg `  G )
)
76 f1of1 5571 . . . . . . . . . . . 12  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-onto-> (Edg `  G )  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> (Edg
`  G ) )
7775, 76syl 14 . . . . . . . . . . 11  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> (Edg `  G ) )
78 eqidd 2230 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  (iEdg `  G
)  =  (iEdg `  G ) )
79 eqidd 2230 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  dom  (iEdg `  G
)  =  dom  (iEdg `  G ) )
80 edgvalg 15860 . . . . . . . . . . . . 13  |-  ( G  e. USPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
8180eqcomd 2235 . . . . . . . . . . . 12  |-  ( G  e. USPGraph  ->  ran  (iEdg `  G
)  =  (Edg `  G ) )
8278, 79, 81f1eq123d 5564 . . . . . . . . . . 11  |-  ( G  e. USPGraph  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> ran  (iEdg `  G )  <->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> (Edg `  G ) ) )
8377, 82mpbird 167 . . . . . . . . . 10  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> ran  (iEdg `  G ) )
84833ad2ant1 1042 . . . . . . . . 9  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
(iEdg `  G ) : dom  (iEdg `  G
) -1-1-> ran  (iEdg `  G
) )
8584adantr 276 . . . . . . . 8  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> ran  (iEdg `  G ) )
8634, 35, 36, 37wlkelwrd 16064 . . . . . . . . . . . . . . 15  |-  ( A  e.  (Walks `  G
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A
) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G
) ) )
8734, 35, 41, 42wlkelwrd 16064 . . . . . . . . . . . . . . 15  |-  ( B  e.  (Walks `  G
)  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )
88 oveq2 6009 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( 0..^ N )  =  ( 0..^ ( `  ( 1st `  A ) ) ) )
8988eleq2d 2299 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( y  e.  ( 0..^ N )  <-> 
y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ) )
90 wrdsymbcl 11085 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  y  e.  ( 0..^ ( `  ( 1st `  A ) ) ) )  ->  (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) )
9190expcom 116 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( 0..^ ( `  ( 1st `  A
) ) )  -> 
( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  ->  (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) )
9289, 91biimtrdi 163 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) ) )
9392adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( y  e.  ( 0..^ N )  -> 
( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  ->  (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) ) )
9493imp 124 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
) ) )
9594com12 30 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  A )  e. Word  dom  (iEdg `  G
)  ->  ( (
( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  A ) `  y
)  e.  dom  (iEdg `  G ) ) )
9695adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  A )  e. Word  dom  (iEdg `  G )
)  ->  ( (
( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  A ) `  y
)  e.  dom  (iEdg `  G ) ) )
97 oveq2 6009 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  =  ( `  ( 1st `  B ) )  ->  ( 0..^ N )  =  ( 0..^ ( `  ( 1st `  B ) ) ) )
9897eleq2d 2299 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  =  ( `  ( 1st `  B ) )  ->  ( y  e.  ( 0..^ N )  <-> 
y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) ) )
99 wrdsymbcl 11085 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  y  e.  ( 0..^ ( `  ( 1st `  B ) ) ) )  ->  (
( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) )
10099expcom 116 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( 0..^ ( `  ( 1st `  B
) ) )  -> 
( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  ->  (
( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) )
10198, 100biimtrdi 163 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  =  ( `  ( 1st `  B ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
102101adantl 277 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( y  e.  ( 0..^ N )  -> 
( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  ->  (
( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
103102imp 124 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  -> 
( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) )
104103com12 30 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  ->  ( (
( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  B ) `  y
)  e.  dom  (iEdg `  G ) ) )
105104adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  A )  e. Word  dom  (iEdg `  G )
)  ->  ( (
( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( 1st `  B ) `  y
)  e.  dom  (iEdg `  G ) ) )
10696, 105jcad 307 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  A )  e. Word  dom  (iEdg `  G )
)  ->  ( (
( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
107106ex 115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  ->  ( ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  /\  y  e.  ( 0..^ N ) )  -> 
( ( ( 1st `  A ) `  y
)  e.  dom  (iEdg `  G )  /\  (
( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
108107adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B
) ) ) --> (Vtx
`  G ) )  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  -> 
( ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  /\  y  e.  ( 0..^ N ) )  -> 
( ( ( 1st `  A ) `  y
)  e.  dom  (iEdg `  G )  /\  (
( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
109108com12 30 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  A )  e. Word  dom  (iEdg `  G
)  ->  ( (
( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B
) ) ) --> (Vtx
`  G ) )  ->  ( ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  /\  y  e.  ( 0..^ N ) )  -> 
( ( ( 1st `  A ) `  y
)  e.  dom  (iEdg `  G )  /\  (
( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
110109adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G ) )  ->  ( ( ( 1st `  B )  e. Word  dom  (iEdg `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) )  ->  (
( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) ) )
111110imp 124 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G )
) )  ->  (
( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) )
11286, 87, 111syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( (
( N  =  ( `  ( 1st `  A
) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
113112expd 258 . . . . . . . . . . . . 13  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( ( N  =  ( `  ( 1st `  A ) )  /\  N  =  ( `  ( 1st `  B
) ) )  -> 
( y  e.  ( 0..^ N )  -> 
( ( ( 1st `  A ) `  y
)  e.  dom  (iEdg `  G )  /\  (
( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) ) )
114113expd 258 . . . . . . . . . . . 12  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( N  =  ( `  ( 1st `  A ) )  -> 
( N  =  ( `  ( 1st `  B
) )  ->  (
y  e.  ( 0..^ N )  ->  (
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) ) ) )
115114imp 124 . . . . . . . . . . 11  |-  ( ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( N  =  ( `  ( 1st `  B
) )  ->  (
y  e.  ( 0..^ N )  ->  (
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) ) )
1161153adant1 1039 . . . . . . . . . 10  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( N  =  ( `  ( 1st `  B
) )  ->  (
y  e.  ( 0..^ N )  ->  (
( ( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) ) ) )
117116imp 124 . . . . . . . . 9  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( y  e.  ( 0..^ N )  ->  ( ( ( 1st `  A ) `
 y )  e. 
dom  (iEdg `  G )  /\  ( ( 1st `  B
) `  y )  e.  dom  (iEdg `  G
) ) ) )
118117imp 124 . . . . . . . 8  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) )
119 f1veqaeq 5893 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> ran  (iEdg `  G
)  /\  ( (
( 1st `  A
) `  y )  e.  dom  (iEdg `  G
)  /\  ( ( 1st `  B ) `  y )  e.  dom  (iEdg `  G ) ) )  ->  ( (
(iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  ->  ( ( 1st `  A ) `  y )  =  ( ( 1st `  B
) `  y )
) )
12085, 118, 119syl2an2r 597 . . . . . . 7  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
(iEdg `  G ) `  ( ( 1st `  A
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  ->  ( ( 1st `  A ) `  y )  =  ( ( 1st `  B
) `  y )
) )
12174, 120biimtrid 152 . . . . . 6  |-  ( ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  /\  y  e.  ( 0..^ N ) )  ->  ( (
(iEdg `  G ) `  ( ( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  ->  ( ( 1st `  A ) `  y )  =  ( ( 1st `  B
) `  y )
) )
122121ralimdva 2597 . . . . 5  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0..^ N ) ( (iEdg `  G ) `  (
( 1st `  B
) `  y )
)  =  ( (iEdg `  G ) `  (
( 1st `  A
) `  y )
)  ->  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) )
12332, 73, 1223syld 57 . . . 4  |-  ( ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  /\  N  =  ( `  ( 1st `  B ) ) )  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
)  ->  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) )
124123expimpd 363 . . 3  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( N  =  ( `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) )  ->  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) )
125124pm4.71d 393 . 2  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( N  =  ( `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) )  <->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. y  e.  ( 0 ... N
) ( ( 2nd `  A ) `  y
)  =  ( ( 2nd `  B ) `
 y ) )  /\  A. y  e.  ( 0..^ N ) ( ( 1st `  A
) `  y )  =  ( ( 1st `  B ) `  y
) ) ) )
1262, 5, 1253bitr4d 220 1  |-  ( ( G  e. USPGraph  /\  ( A  e.  (Walks `  G
)  /\  B  e.  (Walks `  G ) )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  A. y  e.  ( 0 ... N ) ( ( 2nd `  A
) `  y )  =  ( ( 2nd `  B ) `  y
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   {cpr 3667   dom cdm 4719   ran crn 4720   -->wf 5314   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   0cc0 7999   1c1 8000    + caddc 8002   ...cfz 10204  ..^cfzo 10338  ♯chash 10997  Word cword 11071  Vtxcvtx 15813  iEdgciedg 15814  Edgcedg 15858  UPGraphcupgr 15891  USPGraphcuspgr 15951  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-edg 15859  df-uhgrm 15869  df-upgren 15893  df-uspgren 15953  df-wlks 16031
This theorem is referenced by:  uspgr2wlkeq2  16077
  Copyright terms: Public domain W3C validator