ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumle GIF version

Theorem isumle 11545
Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumle.1 𝑍 = (ℤ𝑀)
isumle.2 (𝜑𝑀 ∈ ℤ)
isumle.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumle.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
isumle.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumle.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
isumle.7 ((𝜑𝑘𝑍) → 𝐴𝐵)
isumle.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumle.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumle (𝜑 → Σ𝑘𝑍 𝐴 ≤ Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumle
StepHypRef Expression
1 isumle.1 . . 3 𝑍 = (ℤ𝑀)
2 isumle.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 isumle.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
4 climdm 11345 . . . 4 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
53, 4sylib 122 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
6 isumle.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
7 climdm 11345 . . . 4 (seq𝑀( + , 𝐺) ∈ dom ⇝ ↔ seq𝑀( + , 𝐺) ⇝ ( ⇝ ‘seq𝑀( + , 𝐺)))
86, 7sylib 122 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ ( ⇝ ‘seq𝑀( + , 𝐺)))
9 isumle.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
10 isumle.4 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
119, 10eqeltrd 2266 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
12 isumle.5 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
13 isumle.6 . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
1412, 13eqeltrd 2266 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
15 isumle.7 . . . 4 ((𝜑𝑘𝑍) → 𝐴𝐵)
1615, 9, 123brtr4d 4053 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
171, 2, 5, 8, 11, 14, 16iserle 11392 . 2 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) ≤ ( ⇝ ‘seq𝑀( + , 𝐺)))
1810recnd 8022 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
191, 2, 9, 18isum 11435 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , 𝐹)))
2013recnd 8022 . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
211, 2, 12, 20isum 11435 . 2 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐺)))
2217, 19, 213brtr4d 4053 1 (𝜑 → Σ𝑘𝑍 𝐴 ≤ Σ𝑘𝑍 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4021  dom cdm 4647  cfv 5238  cr 7845   + caddc 7849  cle 8029  cz 9289  cuz 9564  seqcseq 10485  cli 11328  Σcsu 11403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-isom 5247  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-frec 6420  df-1o 6445  df-oadd 6449  df-er 6563  df-en 6771  df-dom 6772  df-fin 6773  df-pnf 8030  df-mnf 8031  df-xr 8032  df-ltxr 8033  df-le 8034  df-sub 8166  df-neg 8167  df-reap 8568  df-ap 8575  df-div 8666  df-inn 8956  df-2 9014  df-3 9015  df-4 9016  df-n0 9213  df-z 9290  df-uz 9565  df-q 9657  df-rp 9691  df-fz 10046  df-fzo 10180  df-seqfrec 10486  df-exp 10561  df-ihash 10798  df-cj 10893  df-re 10894  df-im 10895  df-rsqrt 11049  df-abs 11050  df-clim 11329  df-sumdc 11404
This theorem is referenced by:  isumlessdc  11546  eftlub  11740  eflegeo  11751  trilpolemisumle  15292
  Copyright terms: Public domain W3C validator