ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expgt1 Unicode version

Theorem expgt1 10759
Description: A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expgt1  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <  ( A ^ N
) )

Proof of Theorem expgt1
StepHypRef Expression
1 1re 8106 . . 3  |-  1  e.  RR
21a1i 9 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  e.  RR )
3 simp1 1000 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  e.  RR )
4 simp2 1001 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  N  e.  NN )
54nnnn0d 9383 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  N  e.  NN0 )
6 reexpcl 10738 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  RR )
73, 5, 6syl2anc 411 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( A ^ N )  e.  RR )
8 simp3 1002 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <  A )
9 nnm1nn0 9371 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
104, 9syl 14 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( N  -  1 )  e.  NN0 )
11 ltle 8195 . . . . . . 7  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 1  <  A  ->  1  <_  A )
)
121, 3, 11sylancr 414 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  <  A  ->  1  <_  A ) )
138, 12mpd 13 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <_  A )
14 expge1 10758 . . . . 5  |-  ( ( A  e.  RR  /\  ( N  -  1
)  e.  NN0  /\  1  <_  A )  -> 
1  <_  ( A ^ ( N  - 
1 ) ) )
153, 10, 13, 14syl3anc 1250 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <_  ( A ^ ( N  -  1 ) ) )
16 reexpcl 10738 . . . . . 6  |-  ( ( A  e.  RR  /\  ( N  -  1
)  e.  NN0 )  ->  ( A ^ ( N  -  1 ) )  e.  RR )
173, 10, 16syl2anc 411 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( A ^ ( N  - 
1 ) )  e.  RR )
18 0red 8108 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  0  e.  RR )
19 0lt1 8234 . . . . . . 7  |-  0  <  1
2019a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  0  <  1 )
2118, 2, 3, 20, 8lttrd 8233 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  0  <  A )
22 lemul1 8701 . . . . 5  |-  ( ( 1  e.  RR  /\  ( A ^ ( N  -  1 ) )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <_  ( A ^ ( N  - 
1 ) )  <->  ( 1  x.  A )  <_ 
( ( A ^
( N  -  1 ) )  x.  A
) ) )
232, 17, 3, 21, 22syl112anc 1254 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  <_  ( A ^ ( N  - 
1 ) )  <->  ( 1  x.  A )  <_ 
( ( A ^
( N  -  1 ) )  x.  A
) ) )
2415, 23mpbid 147 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  x.  A )  <_  ( ( A ^ ( N  - 
1 ) )  x.  A ) )
25 recn 8093 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
26253ad2ant1 1021 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  e.  CC )
2726mulid2d 8126 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  x.  A )  =  A )
2827eqcomd 2213 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  =  ( 1  x.  A ) )
29 expm1t 10749 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  ( ( A ^ ( N  -  1 ) )  x.  A ) )
3026, 4, 29syl2anc 411 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( A ^ N )  =  ( ( A ^
( N  -  1 ) )  x.  A
) )
3124, 28, 303brtr4d 4091 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  <_  ( A ^ N
) )
322, 3, 7, 8, 31ltletrd 8531 1  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <  ( A ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278   NNcn 9071   NN0cn0 9330   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  ltexp2a  10773  dvdsprmpweqle  12775  logbgcd1irraplemexp  15555  perfectlem1  15586  perfectlem2  15587
  Copyright terms: Public domain W3C validator