ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expgt1 Unicode version

Theorem expgt1 10489
Description: A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expgt1  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <  ( A ^ N
) )

Proof of Theorem expgt1
StepHypRef Expression
1 1re 7894 . . 3  |-  1  e.  RR
21a1i 9 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  e.  RR )
3 simp1 987 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  e.  RR )
4 simp2 988 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  N  e.  NN )
54nnnn0d 9163 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  N  e.  NN0 )
6 reexpcl 10468 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  RR )
73, 5, 6syl2anc 409 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( A ^ N )  e.  RR )
8 simp3 989 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <  A )
9 nnm1nn0 9151 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
104, 9syl 14 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( N  -  1 )  e.  NN0 )
11 ltle 7982 . . . . . . 7  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 1  <  A  ->  1  <_  A )
)
121, 3, 11sylancr 411 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  <  A  ->  1  <_  A ) )
138, 12mpd 13 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <_  A )
14 expge1 10488 . . . . 5  |-  ( ( A  e.  RR  /\  ( N  -  1
)  e.  NN0  /\  1  <_  A )  -> 
1  <_  ( A ^ ( N  - 
1 ) ) )
153, 10, 13, 14syl3anc 1228 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <_  ( A ^ ( N  -  1 ) ) )
16 reexpcl 10468 . . . . . 6  |-  ( ( A  e.  RR  /\  ( N  -  1
)  e.  NN0 )  ->  ( A ^ ( N  -  1 ) )  e.  RR )
173, 10, 16syl2anc 409 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( A ^ ( N  - 
1 ) )  e.  RR )
18 0red 7896 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  0  e.  RR )
19 0lt1 8021 . . . . . . 7  |-  0  <  1
2019a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  0  <  1 )
2118, 2, 3, 20, 8lttrd 8020 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  0  <  A )
22 lemul1 8487 . . . . 5  |-  ( ( 1  e.  RR  /\  ( A ^ ( N  -  1 ) )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <_  ( A ^ ( N  - 
1 ) )  <->  ( 1  x.  A )  <_ 
( ( A ^
( N  -  1 ) )  x.  A
) ) )
232, 17, 3, 21, 22syl112anc 1232 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  <_  ( A ^ ( N  - 
1 ) )  <->  ( 1  x.  A )  <_ 
( ( A ^
( N  -  1 ) )  x.  A
) ) )
2415, 23mpbid 146 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  x.  A )  <_  ( ( A ^ ( N  - 
1 ) )  x.  A ) )
25 recn 7882 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
26253ad2ant1 1008 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  e.  CC )
2726mulid2d 7913 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  (
1  x.  A )  =  A )
2827eqcomd 2171 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  =  ( 1  x.  A ) )
29 expm1t 10479 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  ( ( A ^ ( N  -  1 ) )  x.  A ) )
3026, 4, 29syl2anc 409 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  ( A ^ N )  =  ( ( A ^
( N  -  1 ) )  x.  A
) )
3124, 28, 303brtr4d 4013 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  A  <_  ( A ^ N
) )
322, 3, 7, 8, 31ltletrd 8317 1  |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A )  ->  1  <  ( A ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3981  (class class class)co 5841   CCcc 7747   RRcr 7748   0cc0 7749   1c1 7750    x. cmul 7754    < clt 7929    <_ cle 7930    - cmin 8065   NNcn 8853   NN0cn0 9110   ^cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  ltexp2a  10503  dvdsprmpweqle  12264  logbgcd1irraplemexp  13486
  Copyright terms: Public domain W3C validator