ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmul Unicode version

Theorem pcmul 12497
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcmul  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )

Proof of Theorem pcmul
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )
2 eqid 2196 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  )
3 eqid 2196 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( A  x.  B
) } ,  RR ,  <  )
41, 2, 3pcpremul 12489 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
51pczpre 12493 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
653adant3 1019 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
72pczpre 12493 . . . 4  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
873adant2 1018 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
96, 8oveq12d 5943 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  +  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) )
10 zmulcl 9398 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
1110ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  ZZ )
12 zcn 9350 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
1312ad2antrr 488 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  CC )
14 zcn 9350 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
1514ad2antrl 490 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  CC )
16 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
17 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
18 0zd 9357 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
0  e.  ZZ )
19 zapne 9419 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A #  0  <->  A  =/=  0 ) )
2017, 18, 19syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A #  0  <->  A  =/=  0 ) )
2116, 20mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A #  0 )
22 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
23 simprl 529 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
24 zapne 9419 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  ->  ( B #  0  <->  B  =/=  0 ) )
2523, 18, 24syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( B #  0  <->  B  =/=  0 ) )
2622, 25mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B #  0 )
2713, 15, 21, 26mulap0d 8704 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
) #  0 )
28 zapne 9419 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
2911, 18, 28syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
3027, 29mpbid 147 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  =/=  0 )
3111, 30jca 306 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )
323pczpre 12493 . . . 4  |-  ( ( P  e.  Prime  /\  (
( A  x.  B
)  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
3331, 32sylan2 286 . . 3  |-  ( ( P  e.  Prime  /\  (
( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
34333impb 1201 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
354, 9, 343eqtr4rd 2240 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   {crab 2479   class class class wbr 4034  (class class class)co 5925   supcsup 7057   CCcc 7896   RRcr 7897   0cc0 7898    + caddc 7901    x. cmul 7903    < clt 8080   # cap 8627   NN0cn0 9268   ZZcz 9345   ^cexp 10649    || cdvds 11971   Primecprime 12302    pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481
This theorem is referenced by:  pcqmul  12499  pcaddlem  12535  pcmpt  12539  pcfac  12546  pcbc  12547  lgsdi  15386
  Copyright terms: Public domain W3C validator