ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmul Unicode version

Theorem pcmul 12819
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcmul  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )

Proof of Theorem pcmul
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )
2 eqid 2229 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  )
3 eqid 2229 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( A  x.  B
) } ,  RR ,  <  )
41, 2, 3pcpremul 12811 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
51pczpre 12815 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
653adant3 1041 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
72pczpre 12815 . . . 4  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
873adant2 1040 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
96, 8oveq12d 6018 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  +  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) )
10 zmulcl 9496 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
1110ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  ZZ )
12 zcn 9447 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
1312ad2antrr 488 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  CC )
14 zcn 9447 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
1514ad2antrl 490 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  CC )
16 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
17 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
18 0zd 9454 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
0  e.  ZZ )
19 zapne 9517 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A #  0  <->  A  =/=  0 ) )
2017, 18, 19syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A #  0  <->  A  =/=  0 ) )
2116, 20mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A #  0 )
22 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
23 simprl 529 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
24 zapne 9517 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  ->  ( B #  0  <->  B  =/=  0 ) )
2523, 18, 24syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( B #  0  <->  B  =/=  0 ) )
2622, 25mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B #  0 )
2713, 15, 21, 26mulap0d 8801 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
) #  0 )
28 zapne 9517 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
2911, 18, 28syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
3027, 29mpbid 147 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  =/=  0 )
3111, 30jca 306 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )
323pczpre 12815 . . . 4  |-  ( ( P  e.  Prime  /\  (
( A  x.  B
)  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
3331, 32sylan2 286 . . 3  |-  ( ( P  e.  Prime  /\  (
( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
34333impb 1223 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
354, 9, 343eqtr4rd 2273 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   {crab 2512   class class class wbr 4082  (class class class)co 6000   supcsup 7145   CCcc 7993   RRcr 7994   0cc0 7995    + caddc 7998    x. cmul 8000    < clt 8177   # cap 8724   NN0cn0 9365   ZZcz 9442   ^cexp 10755    || cdvds 12293   Primecprime 12624    pCnt cpc 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625  df-pc 12803
This theorem is referenced by:  pcqmul  12821  pcaddlem  12857  pcmpt  12861  pcfac  12868  pcbc  12869  lgsdi  15710
  Copyright terms: Public domain W3C validator