ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmul Unicode version

Theorem pcmul 12192
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcmul  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )

Proof of Theorem pcmul
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2157 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )
2 eqid 2157 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  )
3 eqid 2157 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( A  x.  B
) } ,  RR ,  <  )
41, 2, 3pcpremul 12184 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
51pczpre 12188 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
653adant3 1002 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
72pczpre 12188 . . . 4  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
873adant2 1001 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
96, 8oveq12d 5845 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  +  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) )
10 zmulcl 9226 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
1110ad2ant2r 501 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  ZZ )
12 zcn 9178 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
1312ad2antrr 480 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  CC )
14 zcn 9178 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
1514ad2antrl 482 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  CC )
16 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
17 simpll 519 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
18 0zd 9185 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
0  e.  ZZ )
19 zapne 9244 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A #  0  <->  A  =/=  0 ) )
2017, 18, 19syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A #  0  <->  A  =/=  0 ) )
2116, 20mpbird 166 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A #  0 )
22 simprr 522 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
23 simprl 521 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
24 zapne 9244 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  ->  ( B #  0  <->  B  =/=  0 ) )
2523, 18, 24syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( B #  0  <->  B  =/=  0 ) )
2622, 25mpbird 166 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B #  0 )
2713, 15, 21, 26mulap0d 8537 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
) #  0 )
28 zapne 9244 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
2911, 18, 28syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
3027, 29mpbid 146 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  =/=  0 )
3111, 30jca 304 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )
323pczpre 12188 . . . 4  |-  ( ( P  e.  Prime  /\  (
( A  x.  B
)  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
3331, 32sylan2 284 . . 3  |-  ( ( P  e.  Prime  /\  (
( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
34333impb 1181 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
354, 9, 343eqtr4rd 2201 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128    =/= wne 2327   {crab 2439   class class class wbr 3967  (class class class)co 5827   supcsup 6929   CCcc 7733   RRcr 7734   0cc0 7735    + caddc 7738    x. cmul 7740    < clt 7915   # cap 8461   NN0cn0 9096   ZZcz 9173   ^cexp 10428    || cdvds 11695   Primecprime 12000    pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by:  pcqmul  12194
  Copyright terms: Public domain W3C validator