ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmul Unicode version

Theorem pcmul 12709
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcmul  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )

Proof of Theorem pcmul
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  A } ,  RR ,  <  )
2 eqid 2206 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  )
3 eqid 2206 . . 3  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( A  x.  B
) } ,  RR ,  <  )
41, 2, 3pcpremul 12701 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
51pczpre 12705 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
653adant3 1020 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  A } ,  RR ,  <  )
)
72pczpre 12705 . . . 4  |-  ( ( P  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
873adant2 1019 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  B } ,  RR ,  <  )
)
96, 8oveq12d 5980 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  +  ( P 
pCnt  B ) )  =  ( sup ( { n  e.  NN0  | 
( P ^ n
)  ||  A } ,  RR ,  <  )  +  sup ( { n  e.  NN0  |  ( P ^ n )  ||  B } ,  RR ,  <  ) ) )
10 zmulcl 9456 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
1110ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  ZZ )
12 zcn 9407 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
1312ad2antrr 488 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  CC )
14 zcn 9407 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
1514ad2antrl 490 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  CC )
16 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
17 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A  e.  ZZ )
18 0zd 9414 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
0  e.  ZZ )
19 zapne 9477 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( A #  0  <->  A  =/=  0 ) )
2017, 18, 19syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A #  0  <->  A  =/=  0 ) )
2116, 20mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  A #  0 )
22 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
23 simprl 529 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B  e.  ZZ )
24 zapne 9477 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  ->  ( B #  0  <->  B  =/=  0 ) )
2523, 18, 24syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( B #  0  <->  B  =/=  0 ) )
2622, 25mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  B #  0 )
2713, 15, 21, 26mulap0d 8761 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
) #  0 )
28 zapne 9477 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
2911, 18, 28syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B ) #  0  <->  ( A  x.  B )  =/=  0
) )
3027, 29mpbid 147 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  =/=  0 )
3111, 30jca 306 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )
323pczpre 12705 . . . 4  |-  ( ( P  e.  Prime  /\  (
( A  x.  B
)  e.  ZZ  /\  ( A  x.  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
3331, 32sylan2 286 . . 3  |-  ( ( P  e.  Prime  /\  (
( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
34333impb 1202 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( A  x.  B ) } ,  RR ,  <  ) )
354, 9, 343eqtr4rd 2250 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   {crab 2489   class class class wbr 4054  (class class class)co 5962   supcsup 7105   CCcc 7953   RRcr 7954   0cc0 7955    + caddc 7958    x. cmul 7960    < clt 8137   # cap 8684   NN0cn0 9325   ZZcz 9402   ^cexp 10715    || cdvds 12183   Primecprime 12514    pCnt cpc 12692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360  df-prm 12515  df-pc 12693
This theorem is referenced by:  pcqmul  12711  pcaddlem  12747  pcmpt  12751  pcfac  12758  pcbc  12759  lgsdi  15599
  Copyright terms: Public domain W3C validator