ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxsuffeqwrdeq GIF version

Theorem pfxsuffeqwrdeq 11152
Description: Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 5-May-2020.)
Assertion
Ref Expression
pfxsuffeqwrdeq ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))

Proof of Theorem pfxsuffeqwrdeq
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqwrd 11036 . . 3 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
213adant3 1020 . 2 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
3 elfzofz 10287 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ (0...(♯‘𝑊)))
4 fzosplit 10303 . . . . . . . . 9 (𝐼 ∈ (0...(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
53, 4syl 14 . . . . . . . 8 (𝐼 ∈ (0..^(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
653ad2ant3 1023 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
76adantr 276 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
87raleqdv 2708 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ ∀𝑖 ∈ ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊𝑖) = (𝑆𝑖)))
9 ralunb 3354 . . . . 5 (∀𝑖 ∈ ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊𝑖) = (𝑆𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
108, 9bitrdi 196 . . . 4 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
11 eqidd 2206 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 = 𝐼)
12 3simpa 997 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉))
1312adantr 276 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉))
14 elfzonn0 10312 . . . . . . . . . 10 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℕ0)
1514, 14jca 306 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
16153ad2ant3 1023 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
1716adantr 276 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
18 elfzo0le 10311 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ≤ (♯‘𝑊))
19183ad2ant3 1023 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (♯‘𝑊))
2019adantr 276 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑊))
21 breq2 4049 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑆) → (𝐼 ≤ (♯‘𝑊) ↔ 𝐼 ≤ (♯‘𝑆)))
2221adantl 277 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ≤ (♯‘𝑊) ↔ 𝐼 ≤ (♯‘𝑆)))
2320, 22mpbid 147 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑆))
24 pfxeq 11150 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0𝐼 ∈ ℕ0) ∧ (𝐼 ≤ (♯‘𝑊) ∧ 𝐼 ≤ (♯‘𝑆))) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖))))
2513, 17, 20, 23, 24syl112anc 1254 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖))))
2611, 25mpbirand 441 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖)))
27 lencl 11000 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2827, 14anim12ci 339 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
29283adant2 1019 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
3029adantr 276 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
3127nn0red 9351 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
3231leidd 8589 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ≤ (♯‘𝑊))
3332adantr 276 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑊))
34 eqle 8166 . . . . . . . . 9 (((♯‘𝑊) ∈ ℝ ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆))
3531, 34sylan 283 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆))
3633, 35jca 306 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆)))
37363ad2antl1 1162 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆)))
38 swrdspsleq 11123 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) ∧ ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆))) → ((𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
3913, 30, 37, 38syl3anc 1250 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
4026, 39anbi12d 473 . . . 4 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
4110, 40bitr4d 191 . . 3 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩))))
4241pm5.32da 452 . 2 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)) ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
432, 42bitrd 188 1 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  wral 2484  cun 3164  cop 3636   class class class wbr 4045  cfv 5272  (class class class)co 5946  cr 7926  0cc0 7927  cle 8110  0cn0 9297  ...cfz 10132  ..^cfzo 10266  chash 10922  Word cword 10996   substr csubstr 11101   prefix cpfx 11128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-fzo 10267  df-ihash 10923  df-word 10997  df-substr 11102  df-pfx 11129
This theorem is referenced by:  pfxsuff1eqwrdeq  11153
  Copyright terms: Public domain W3C validator