| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swrds1 | Unicode version | ||
| Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| swrds1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | elfzoelz 10299 |
. . . . 5
| |
| 3 | 2 | adantl 277 |
. . . 4
|
| 4 | 3 | peano2zd 9528 |
. . . 4
|
| 5 | swrdclg 11136 |
. . . 4
| |
| 6 | 1, 3, 4, 5 | syl3anc 1250 |
. . 3
|
| 7 | elfzouz 10303 |
. . . . . . 7
| |
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | uzid 9692 |
. . . . . . 7
| |
| 10 | peano2uz 9734 |
. . . . . . 7
| |
| 11 | 3, 9, 10 | 3syl 17 |
. . . . . 6
|
| 12 | elfzuzb 10171 |
. . . . . 6
| |
| 13 | 8, 11, 12 | sylanbrc 417 |
. . . . 5
|
| 14 | fzofzp1 10388 |
. . . . . 6
| |
| 15 | 14 | adantl 277 |
. . . . 5
|
| 16 | swrdlen 11138 |
. . . . 5
| |
| 17 | 1, 13, 15, 16 | syl3anc 1250 |
. . . 4
|
| 18 | 3 | zcnd 9526 |
. . . . 5
|
| 19 | ax-1cn 8048 |
. . . . 5
| |
| 20 | pncan2 8309 |
. . . . 5
| |
| 21 | 18, 19, 20 | sylancl 413 |
. . . 4
|
| 22 | 17, 21 | eqtrd 2239 |
. . 3
|
| 23 | eqs1 11115 |
. . 3
| |
| 24 | 6, 22, 23 | syl2anc 411 |
. 2
|
| 25 | 0z 9413 |
. . . . . . 7
| |
| 26 | snidg 3667 |
. . . . . . 7
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . 6
|
| 28 | 21 | oveq2d 5978 |
. . . . . . 7
|
| 29 | fzo01 10377 |
. . . . . . 7
| |
| 30 | 28, 29 | eqtrdi 2255 |
. . . . . 6
|
| 31 | 27, 30 | eleqtrrid 2296 |
. . . . 5
|
| 32 | swrdfv 11139 |
. . . . 5
| |
| 33 | 1, 13, 15, 31, 32 | syl31anc 1253 |
. . . 4
|
| 34 | addlid 8241 |
. . . . . . 7
| |
| 35 | 34 | eqcomd 2212 |
. . . . . 6
|
| 36 | 18, 35 | syl 14 |
. . . . 5
|
| 37 | 36 | fveq2d 5598 |
. . . 4
|
| 38 | 33, 37 | eqtr4d 2242 |
. . 3
|
| 39 | 38 | s1eqd 11107 |
. 2
|
| 40 | 24, 39 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-1o 6520 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-fzo 10295 df-ihash 10953 df-word 11027 df-s1 11103 df-substr 11132 |
| This theorem is referenced by: swrdlsw 11155 pfx1 11189 |
| Copyright terms: Public domain | W3C validator |