ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccatin1 Unicode version

Theorem swrdccatin1 11216
Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
Assertion
Ref Expression
swrdccatin1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )

Proof of Theorem swrdccatin1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . 6  |-  ( ( `  A )  =  0  ->  ( 0 ... ( `  A )
)  =  ( 0 ... 0 ) )
21eleq2d 2277 . . . . 5  |-  ( ( `  A )  =  0  ->  ( N  e.  ( 0 ... ( `  A ) )  <->  N  e.  ( 0 ... 0
) ) )
32adantl 277 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( N  e.  ( 0 ... ( `  A ) )  <->  N  e.  ( 0 ... 0
) ) )
4 elfz1eq 10192 . . . . . . 7  |-  ( N  e.  ( 0 ... 0 )  ->  N  =  0 )
5 elfz1eq 10192 . . . . . . . . . . 11  |-  ( M  e.  ( 0 ... 0 )  ->  M  =  0 )
6 ccatcl 11087 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
7 0z 9418 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
8 swrd00g 11140 . . . . . . . . . . . . . . 15  |-  ( ( ( A ++  B )  e. Word  V  /\  0  e.  ZZ )  ->  (
( A ++  B ) substr  <. 0 ,  0 >.
)  =  (/) )
96, 7, 8sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A ++  B
) substr  <. 0 ,  0
>. )  =  (/) )
10 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
11 swrd00g 11140 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  0  e.  ZZ )  ->  ( A substr  <. 0 ,  0 >. )  =  (/) )
1210, 7, 11sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A substr  <. 0 ,  0 >. )  =  (/) )
139, 12eqtr4d 2243 . . . . . . . . . . . . 13  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A ++  B
) substr  <. 0 ,  0
>. )  =  ( A substr  <. 0 ,  0
>. ) )
1413adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( ( A ++  B ) substr  <. 0 ,  0 >. )  =  ( A substr  <. 0 ,  0 >. )
)
15 opeq1 3833 . . . . . . . . . . . . . 14  |-  ( M  =  0  ->  <. M , 
0 >.  =  <. 0 ,  0 >. )
1615oveq2d 5983 . . . . . . . . . . . . 13  |-  ( M  =  0  ->  (
( A ++  B ) substr  <. M ,  0 >.
)  =  ( ( A ++  B ) substr  <. 0 ,  0 >. ) )
1716adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( ( A ++  B ) substr  <. 0 ,  0 >.
) )
1815oveq2d 5983 . . . . . . . . . . . . 13  |-  ( M  =  0  ->  ( A substr  <. M ,  0
>. )  =  ( A substr  <. 0 ,  0
>. ) )
1918adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( A substr  <. M ,  0 >. )  =  ( A substr  <. 0 ,  0 >. )
)
2014, 17, 193eqtr4d 2250 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) )
215, 20sylan2 286 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... 0 ) )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) )
2221ex 115 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( M  e.  ( 0 ... 0 )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) )
2322adantr 276 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  =  0 )  ->  ( M  e.  ( 0 ... 0
)  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) )
24 oveq2 5975 . . . . . . . . . . 11  |-  ( N  =  0  ->  (
0 ... N )  =  ( 0 ... 0
) )
2524eleq2d 2277 . . . . . . . . . 10  |-  ( N  =  0  ->  ( M  e.  ( 0 ... N )  <->  M  e.  ( 0 ... 0
) ) )
26 opeq2 3834 . . . . . . . . . . . 12  |-  ( N  =  0  ->  <. M ,  N >.  =  <. M , 
0 >. )
2726oveq2d 5983 . . . . . . . . . . 11  |-  ( N  =  0  ->  (
( A ++  B ) substr  <. M ,  N >. )  =  ( ( A ++  B ) substr  <. M , 
0 >. ) )
2826oveq2d 5983 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( A substr  <. M ,  N >. )  =  ( A substr  <. M ,  0 >.
) )
2927, 28eqeq12d 2222 . . . . . . . . . 10  |-  ( N  =  0  ->  (
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. )  <-> 
( ( A ++  B
) substr  <. M ,  0
>. )  =  ( A substr  <. M ,  0
>. ) ) )
3025, 29imbi12d 234 . . . . . . . . 9  |-  ( N  =  0  ->  (
( M  e.  ( 0 ... N )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )  <->  ( M  e.  ( 0 ... 0
)  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) ) )
3130adantl 277 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  =  0 )  ->  ( ( M  e.  ( 0 ... N )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )  <->  ( M  e.  ( 0 ... 0
)  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) ) )
3223, 31mpbird 167 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  =  0 )  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
334, 32sylan2 286 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  e.  ( 0 ... 0 ) )  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
3433ex 115 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... 0 )  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
3534adantr 276 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( N  e.  ( 0 ... 0
)  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
363, 35sylbid 150 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( N  e.  ( 0 ... ( `  A ) )  -> 
( M  e.  ( 0 ... N )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
3736impcomd 255 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
386ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( A ++  B )  e. Word  V
)
39 simprl 529 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  M  e.  ( 0 ... N
) )
40 elfzelfzccat 11094 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... ( `  A
) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) ) )
4140imp 124 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  e.  ( 0 ... ( `  A
) ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )
4241ad2ant2rl 511 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )
43 swrdvalfn 11147 . . . . 5  |-  ( ( ( A ++  B )  e. Word  V  /\  M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  Fn  ( 0..^ ( N  -  M
) ) )
4438, 39, 42, 43syl3anc 1250 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
45 3anass 985 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  <->  ( A  e. Word  V  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) ) ) )
4645simplbi2 385 . . . . . . 7  |-  ( A  e. Word  V  ->  (
( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  -> 
( A  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) ) ) )
4746ad2antrr 488 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =/=  0 )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) ) ) )
4847imp 124 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )
49 swrdvalfn 11147 . . . . 5  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  -> 
( A substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
5048, 49syl 14 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( A substr  <. M ,  N >. )  Fn  ( 0..^ ( N  -  M ) ) )
51 simp-4l 541 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  A  e. Word  V )
52 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  B  e. Word  V )
53 elfznn0 10271 . . . . . . . . . 10  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
54 nn0addcl 9365 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  +  M
)  e.  NN0 )
5554expcom 116 . . . . . . . . . 10  |-  ( M  e.  NN0  ->  ( k  e.  NN0  ->  ( k  +  M )  e. 
NN0 ) )
5653, 55syl 14 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  (
k  e.  NN0  ->  ( k  +  M )  e.  NN0 ) )
5756ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( k  e.  NN0  ->  ( k  +  M )  e.  NN0 ) )
58 elfzonn0 10347 . . . . . . . 8  |-  ( k  e.  ( 0..^ ( N  -  M ) )  ->  k  e.  NN0 )
5957, 58impel 280 . . . . . . 7  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  e.  NN0 )
60 lencl 11035 . . . . . . . . . . 11  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
61 elnnne0 9344 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  <->  ( ( `  A )  e.  NN0  /\  ( `  A
)  =/=  0 ) )
6261simplbi2 385 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN0  ->  ( ( `  A
)  =/=  0  -> 
( `  A )  e.  NN ) )
6360, 62syl 14 . . . . . . . . . 10  |-  ( A  e. Word  V  ->  (
( `  A )  =/=  0  ->  ( `  A
)  e.  NN ) )
6463adantr 276 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  =/=  0  -> 
( `  A )  e.  NN ) )
6564imp 124 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =/=  0 )  ->  ( `  A )  e.  NN )
6665ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( `  A
)  e.  NN )
67 elfzo0 10343 . . . . . . . . 9  |-  ( k  e.  ( 0..^ ( N  -  M ) )  <->  ( k  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  k  <  ( N  -  M ) ) )
68 elfz2nn0 10269 . . . . . . . . . . . 12  |-  ( N  e.  ( 0 ... ( `  A )
)  <->  ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
) )
69 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  NN0  ->  k  e.  RR )
7069ad2antrl 490 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  k  e.  RR )
71 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  NN0  ->  M  e.  RR )
7271ad2antll 491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  M  e.  RR )
73 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  N  e.  RR )
7473ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  N  e.  RR )
7570, 72, 74ltaddsubd 8653 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( ( k  +  M )  < 
N  <->  k  <  ( N  -  M )
) )
76 nn0readdcl 9389 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  +  M
)  e.  RR )
7776adantl 277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( k  +  M )  e.  RR )
78 nn0re 9339 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( `  A )  e.  NN0  ->  ( `  A )  e.  RR )
7978ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( `  A )  e.  RR )
80 ltletr 8197 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( k  +  M
)  e.  RR  /\  N  e.  RR  /\  ( `  A )  e.  RR )  ->  ( ( ( k  +  M )  <  N  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) )
8177, 74, 79, 80syl3anc 1250 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( ( ( k  +  M )  <  N  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) )
8281expd 258 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( ( k  +  M )  < 
N  ->  ( N  <_  ( `  A )  ->  ( k  +  M
)  <  ( `  A
) ) ) )
8375, 82sylbird 170 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( k  < 
( N  -  M
)  ->  ( N  <_  ( `  A )  ->  ( k  +  M
)  <  ( `  A
) ) ) )
8483ex 115 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0 )  ->  (
( k  e.  NN0  /\  M  e.  NN0 )  ->  ( k  <  ( N  -  M )  ->  ( N  <_  ( `  A )  ->  (
k  +  M )  <  ( `  A )
) ) ) )
8584com24 87 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0 )  ->  ( N  <_  ( `  A )  ->  ( k  <  ( N  -  M )  ->  ( ( k  e. 
NN0  /\  M  e.  NN0 )  ->  ( k  +  M )  <  ( `  A ) ) ) ) )
86853impia 1203 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0  /\  N  <_  ( `  A ) )  -> 
( k  <  ( N  -  M )  ->  ( ( k  e. 
NN0  /\  M  e.  NN0 )  ->  ( k  +  M )  <  ( `  A ) ) ) )
8786com13 80 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  <  ( N  -  M )  ->  ( ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) ) )
8887impancom 260 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  k  <  ( N  -  M ) )  -> 
( M  e.  NN0  ->  ( ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) ) )
89883adant2 1019 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( M  e.  NN0  ->  ( ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) ) )
9089com13 80 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0  /\  N  <_  ( `  A ) )  -> 
( M  e.  NN0  ->  ( ( k  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  k  <  ( N  -  M ) )  ->  ( k  +  M )  <  ( `  A ) ) ) )
9168, 90sylbi 121 . . . . . . . . . . 11  |-  ( N  e.  ( 0 ... ( `  A )
)  ->  ( M  e.  NN0  ->  ( (
k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( `  A
) ) ) )
9253, 91mpan9 281 . . . . . . . . . 10  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  -> 
( ( k  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  k  <  ( N  -  M ) )  ->  ( k  +  M )  <  ( `  A ) ) )
9392adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( (
k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( `  A
) ) )
9467, 93biimtrid 152 . . . . . . . 8  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( k  e.  ( 0..^ ( N  -  M ) )  ->  ( k  +  M )  <  ( `  A ) ) )
9594imp 124 . . . . . . 7  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  <  ( `  A ) )
96 elfzo0 10343 . . . . . . 7  |-  ( ( k  +  M )  e.  ( 0..^ ( `  A ) )  <->  ( (
k  +  M )  e.  NN0  /\  ( `  A )  e.  NN  /\  ( k  +  M
)  <  ( `  A
) ) )
9759, 66, 95, 96syl3anbrc 1184 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  e.  ( 0..^ ( `  A
) ) )
98 ccatval1 11091 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  (
k  +  M )  e.  ( 0..^ ( `  A ) ) )  ->  ( ( A ++  B ) `  (
k  +  M ) )  =  ( A `
 ( k  +  M ) ) )
9951, 52, 97, 98syl3anc 1250 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( A ++  B ) `  (
k  +  M ) )  =  ( A `
 ( k  +  M ) ) )
1006ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( A ++  B )  e. Word  V
)
101 simplrl 535 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  M  e.  ( 0 ... N
) )
10242adantr 276 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )
103 simpr 110 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  k  e.  ( 0..^ ( N  -  M ) ) )
104 swrdfv 11144 . . . . . 6  |-  ( ( ( ( A ++  B
)  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A ++  B
) `  ( k  +  M ) ) )
105100, 101, 102, 103, 104syl31anc 1253 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A ++  B
) `  ( k  +  M ) ) )
106 swrdfv 11144 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  /\  k  e.  ( 0..^ ( N  -  M
) ) )  -> 
( ( A substr  <. M ,  N >. ) `  k
)  =  ( A `
 ( k  +  M ) ) )
10748, 106sylan 283 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( A substr  <. M ,  N >. ) `  k )  =  ( A `  ( k  +  M
) ) )
10899, 105, 1073eqtr4d 2250 . . . 4  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A substr  <. M ,  N >. ) `  k
) )
10944, 50, 108eqfnfvd 5703 . . 3  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )
110109ex 115 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =/=  0 )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
11160nn0zd 9528 . . . . 5  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
112 zdceq 9483 . . . . 5  |-  ( ( ( `  A )  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( `  A )  =  0 )
113111, 7, 112sylancl 413 . . . 4  |-  ( A  e. Word  V  -> DECID  ( `  A )  =  0 )
114 dcne 2389 . . . 4  |-  (DECID  ( `  A
)  =  0  <->  (
( `  A )  =  0  \/  ( `  A
)  =/=  0 ) )
115113, 114sylib 122 . . 3  |-  ( A  e. Word  V  ->  (
( `  A )  =  0  \/  ( `  A
)  =/=  0 ) )
116115adantr 276 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  =  0  \/  ( `  A )  =/=  0 ) )
11737, 110, 116mpjaodan 800 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   (/)c0 3468   <.cop 3646   class class class wbr 4059    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   RRcr 7959   0cc0 7960    + caddc 7963    < clt 8142    <_ cle 8143    - cmin 8278   NNcn 9071   NN0cn0 9330   ZZcz 9407   ...cfz 10165  ..^cfzo 10299  ♯chash 10957  Word cword 11031   ++ cconcat 11084   substr csubstr 11136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-concat 11085  df-substr 11137
This theorem is referenced by:  pfxccat3  11225  pfxccatpfx1  11227  swrdccatin1d  11234
  Copyright terms: Public domain W3C validator