ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccatin1 Unicode version

Theorem swrdccatin1 11252
Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
Assertion
Ref Expression
swrdccatin1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )

Proof of Theorem swrdccatin1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 oveq2 6008 . . . . . 6  |-  ( ( `  A )  =  0  ->  ( 0 ... ( `  A )
)  =  ( 0 ... 0 ) )
21eleq2d 2299 . . . . 5  |-  ( ( `  A )  =  0  ->  ( N  e.  ( 0 ... ( `  A ) )  <->  N  e.  ( 0 ... 0
) ) )
32adantl 277 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( N  e.  ( 0 ... ( `  A ) )  <->  N  e.  ( 0 ... 0
) ) )
4 elfz1eq 10227 . . . . . . 7  |-  ( N  e.  ( 0 ... 0 )  ->  N  =  0 )
5 elfz1eq 10227 . . . . . . . . . . 11  |-  ( M  e.  ( 0 ... 0 )  ->  M  =  0 )
6 ccatcl 11123 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
7 0z 9453 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
8 swrd00g 11176 . . . . . . . . . . . . . . 15  |-  ( ( ( A ++  B )  e. Word  V  /\  0  e.  ZZ )  ->  (
( A ++  B ) substr  <. 0 ,  0 >.
)  =  (/) )
96, 7, 8sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A ++  B
) substr  <. 0 ,  0
>. )  =  (/) )
10 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
11 swrd00g 11176 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  0  e.  ZZ )  ->  ( A substr  <. 0 ,  0 >. )  =  (/) )
1210, 7, 11sylancl 413 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A substr  <. 0 ,  0 >. )  =  (/) )
139, 12eqtr4d 2265 . . . . . . . . . . . . 13  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( A ++  B
) substr  <. 0 ,  0
>. )  =  ( A substr  <. 0 ,  0
>. ) )
1413adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( ( A ++  B ) substr  <. 0 ,  0 >. )  =  ( A substr  <. 0 ,  0 >. )
)
15 opeq1 3856 . . . . . . . . . . . . . 14  |-  ( M  =  0  ->  <. M , 
0 >.  =  <. 0 ,  0 >. )
1615oveq2d 6016 . . . . . . . . . . . . 13  |-  ( M  =  0  ->  (
( A ++  B ) substr  <. M ,  0 >.
)  =  ( ( A ++  B ) substr  <. 0 ,  0 >. ) )
1716adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( ( A ++  B ) substr  <. 0 ,  0 >.
) )
1815oveq2d 6016 . . . . . . . . . . . . 13  |-  ( M  =  0  ->  ( A substr  <. M ,  0
>. )  =  ( A substr  <. 0 ,  0
>. ) )
1918adantl 277 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( A substr  <. M ,  0 >. )  =  ( A substr  <. 0 ,  0 >. )
)
2014, 17, 193eqtr4d 2272 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  =  0 )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) )
215, 20sylan2 286 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... 0 ) )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) )
2221ex 115 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( M  e.  ( 0 ... 0 )  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) )
2322adantr 276 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  =  0 )  ->  ( M  e.  ( 0 ... 0
)  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) )
24 oveq2 6008 . . . . . . . . . . 11  |-  ( N  =  0  ->  (
0 ... N )  =  ( 0 ... 0
) )
2524eleq2d 2299 . . . . . . . . . 10  |-  ( N  =  0  ->  ( M  e.  ( 0 ... N )  <->  M  e.  ( 0 ... 0
) ) )
26 opeq2 3857 . . . . . . . . . . . 12  |-  ( N  =  0  ->  <. M ,  N >.  =  <. M , 
0 >. )
2726oveq2d 6016 . . . . . . . . . . 11  |-  ( N  =  0  ->  (
( A ++  B ) substr  <. M ,  N >. )  =  ( ( A ++  B ) substr  <. M , 
0 >. ) )
2826oveq2d 6016 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( A substr  <. M ,  N >. )  =  ( A substr  <. M ,  0 >.
) )
2927, 28eqeq12d 2244 . . . . . . . . . 10  |-  ( N  =  0  ->  (
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. )  <-> 
( ( A ++  B
) substr  <. M ,  0
>. )  =  ( A substr  <. M ,  0
>. ) ) )
3025, 29imbi12d 234 . . . . . . . . 9  |-  ( N  =  0  ->  (
( M  e.  ( 0 ... N )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )  <->  ( M  e.  ( 0 ... 0
)  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) ) )
3130adantl 277 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  =  0 )  ->  ( ( M  e.  ( 0 ... N )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )  <->  ( M  e.  ( 0 ... 0
)  ->  ( ( A ++  B ) substr  <. M , 
0 >. )  =  ( A substr  <. M ,  0
>. ) ) ) )
3223, 31mpbird 167 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  =  0 )  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
334, 32sylan2 286 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  e.  ( 0 ... 0 ) )  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
3433ex 115 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... 0 )  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
3534adantr 276 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( N  e.  ( 0 ... 0
)  ->  ( M  e.  ( 0 ... N
)  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
363, 35sylbid 150 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( N  e.  ( 0 ... ( `  A ) )  -> 
( M  e.  ( 0 ... N )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) ) )
3736impcomd 255 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =  0 )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
386ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( A ++  B )  e. Word  V
)
39 simprl 529 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  M  e.  ( 0 ... N
) )
40 elfzelfzccat 11130 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... ( `  A
) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) ) )
4140imp 124 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  N  e.  ( 0 ... ( `  A
) ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )
4241ad2ant2rl 511 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )
43 swrdvalfn 11183 . . . . 5  |-  ( ( ( A ++  B )  e. Word  V  /\  M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )  -> 
( ( A ++  B
) substr  <. M ,  N >. )  Fn  ( 0..^ ( N  -  M
) ) )
4438, 39, 42, 43syl3anc 1271 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
45 3anass 1006 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  <->  ( A  e. Word  V  /\  ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) ) ) )
4645simplbi2 385 . . . . . . 7  |-  ( A  e. Word  V  ->  (
( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  -> 
( A  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) ) ) )
4746ad2antrr 488 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =/=  0 )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) ) ) )
4847imp 124 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( A  e. Word  V  /\  M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )
49 swrdvalfn 11183 . . . . 5  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  -> 
( A substr  <. M ,  N >. )  Fn  (
0..^ ( N  -  M ) ) )
5048, 49syl 14 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( A substr  <. M ,  N >. )  Fn  ( 0..^ ( N  -  M ) ) )
51 simp-4l 541 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  A  e. Word  V )
52 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  B  e. Word  V )
53 elfznn0 10306 . . . . . . . . . 10  |-  ( M  e.  ( 0 ... N )  ->  M  e.  NN0 )
54 nn0addcl 9400 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  +  M
)  e.  NN0 )
5554expcom 116 . . . . . . . . . 10  |-  ( M  e.  NN0  ->  ( k  e.  NN0  ->  ( k  +  M )  e. 
NN0 ) )
5653, 55syl 14 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  (
k  e.  NN0  ->  ( k  +  M )  e.  NN0 ) )
5756ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( k  e.  NN0  ->  ( k  +  M )  e.  NN0 ) )
58 elfzonn0 10382 . . . . . . . 8  |-  ( k  e.  ( 0..^ ( N  -  M ) )  ->  k  e.  NN0 )
5957, 58impel 280 . . . . . . 7  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  e.  NN0 )
60 lencl 11070 . . . . . . . . . . 11  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
61 elnnne0 9379 . . . . . . . . . . . 12  |-  ( ( `  A )  e.  NN  <->  ( ( `  A )  e.  NN0  /\  ( `  A
)  =/=  0 ) )
6261simplbi2 385 . . . . . . . . . . 11  |-  ( ( `  A )  e.  NN0  ->  ( ( `  A
)  =/=  0  -> 
( `  A )  e.  NN ) )
6360, 62syl 14 . . . . . . . . . 10  |-  ( A  e. Word  V  ->  (
( `  A )  =/=  0  ->  ( `  A
)  e.  NN ) )
6463adantr 276 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  =/=  0  -> 
( `  A )  e.  NN ) )
6564imp 124 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =/=  0 )  ->  ( `  A )  e.  NN )
6665ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( `  A
)  e.  NN )
67 elfzo0 10378 . . . . . . . . 9  |-  ( k  e.  ( 0..^ ( N  -  M ) )  <->  ( k  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  k  <  ( N  -  M ) ) )
68 elfz2nn0 10304 . . . . . . . . . . . 12  |-  ( N  e.  ( 0 ... ( `  A )
)  <->  ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
) )
69 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  NN0  ->  k  e.  RR )
7069ad2antrl 490 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  k  e.  RR )
71 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  NN0  ->  M  e.  RR )
7271ad2antll 491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  M  e.  RR )
73 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  N  e.  RR )
7473ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  N  e.  RR )
7570, 72, 74ltaddsubd 8688 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( ( k  +  M )  < 
N  <->  k  <  ( N  -  M )
) )
76 nn0readdcl 9424 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  +  M
)  e.  RR )
7776adantl 277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( k  +  M )  e.  RR )
78 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( `  A )  e.  NN0  ->  ( `  A )  e.  RR )
7978ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( `  A )  e.  RR )
80 ltletr 8232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( k  +  M
)  e.  RR  /\  N  e.  RR  /\  ( `  A )  e.  RR )  ->  ( ( ( k  +  M )  <  N  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) )
8177, 74, 79, 80syl3anc 1271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( ( ( k  +  M )  <  N  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) )
8281expd 258 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( ( k  +  M )  < 
N  ->  ( N  <_  ( `  A )  ->  ( k  +  M
)  <  ( `  A
) ) ) )
8375, 82sylbird 170 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN0  /\  ( `  A )  e.  NN0 )  /\  (
k  e.  NN0  /\  M  e.  NN0 ) )  ->  ( k  < 
( N  -  M
)  ->  ( N  <_  ( `  A )  ->  ( k  +  M
)  <  ( `  A
) ) ) )
8483ex 115 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0 )  ->  (
( k  e.  NN0  /\  M  e.  NN0 )  ->  ( k  <  ( N  -  M )  ->  ( N  <_  ( `  A )  ->  (
k  +  M )  <  ( `  A )
) ) ) )
8584com24 87 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0 )  ->  ( N  <_  ( `  A )  ->  ( k  <  ( N  -  M )  ->  ( ( k  e. 
NN0  /\  M  e.  NN0 )  ->  ( k  +  M )  <  ( `  A ) ) ) ) )
86853impia 1224 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0  /\  N  <_  ( `  A ) )  -> 
( k  <  ( N  -  M )  ->  ( ( k  e. 
NN0  /\  M  e.  NN0 )  ->  ( k  +  M )  <  ( `  A ) ) ) )
8786com13 80 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  M  e.  NN0 )  -> 
( k  <  ( N  -  M )  ->  ( ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) ) )
8887impancom 260 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  k  <  ( N  -  M ) )  -> 
( M  e.  NN0  ->  ( ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) ) )
89883adant2 1040 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( M  e.  NN0  ->  ( ( N  e. 
NN0  /\  ( `  A
)  e.  NN0  /\  N  <_  ( `  A )
)  ->  ( k  +  M )  <  ( `  A ) ) ) )
9089com13 80 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( `  A )  e. 
NN0  /\  N  <_  ( `  A ) )  -> 
( M  e.  NN0  ->  ( ( k  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  k  <  ( N  -  M ) )  ->  ( k  +  M )  <  ( `  A ) ) ) )
9168, 90sylbi 121 . . . . . . . . . . 11  |-  ( N  e.  ( 0 ... ( `  A )
)  ->  ( M  e.  NN0  ->  ( (
k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( `  A
) ) ) )
9253, 91mpan9 281 . . . . . . . . . 10  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  -> 
( ( k  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  k  <  ( N  -  M ) )  ->  ( k  +  M )  <  ( `  A ) ) )
9392adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( (
k  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  k  <  ( N  -  M ) )  -> 
( k  +  M
)  <  ( `  A
) ) )
9467, 93biimtrid 152 . . . . . . . 8  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( k  e.  ( 0..^ ( N  -  M ) )  ->  ( k  +  M )  <  ( `  A ) ) )
9594imp 124 . . . . . . 7  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  <  ( `  A ) )
96 elfzo0 10378 . . . . . . 7  |-  ( ( k  +  M )  e.  ( 0..^ ( `  A ) )  <->  ( (
k  +  M )  e.  NN0  /\  ( `  A )  e.  NN  /\  ( k  +  M
)  <  ( `  A
) ) )
9759, 66, 95, 96syl3anbrc 1205 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( k  +  M )  e.  ( 0..^ ( `  A
) ) )
98 ccatval1 11127 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  (
k  +  M )  e.  ( 0..^ ( `  A ) ) )  ->  ( ( A ++  B ) `  (
k  +  M ) )  =  ( A `
 ( k  +  M ) ) )
9951, 52, 97, 98syl3anc 1271 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( A ++  B ) `  (
k  +  M ) )  =  ( A `
 ( k  +  M ) ) )
1006ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( A ++  B )  e. Word  V
)
101 simplrl 535 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  M  e.  ( 0 ... N
) )
10242adantr 276 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )
103 simpr 110 . . . . . 6  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  k  e.  ( 0..^ ( N  -  M ) ) )
104 swrdfv 11180 . . . . . 6  |-  ( ( ( ( A ++  B
)  e. Word  V  /\  M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  ( A ++  B ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A ++  B
) `  ( k  +  M ) ) )
105100, 101, 102, 103, 104syl31anc 1274 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A ++  B
) `  ( k  +  M ) ) )
106 swrdfv 11180 . . . . . 6  |-  ( ( ( A  e. Word  V  /\  M  e.  (
0 ... N )  /\  N  e.  ( 0 ... ( `  A
) ) )  /\  k  e.  ( 0..^ ( N  -  M
) ) )  -> 
( ( A substr  <. M ,  N >. ) `  k
)  =  ( A `
 ( k  +  M ) ) )
10748, 106sylan 283 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( ( A substr  <. M ,  N >. ) `  k )  =  ( A `  ( k  +  M
) ) )
10899, 105, 1073eqtr4d 2272 . . . 4  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A )  =/=  0
)  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  /\  k  e.  ( 0..^ ( N  -  M ) ) )  ->  ( (
( A ++  B ) substr  <. M ,  N >. ) `
 k )  =  ( ( A substr  <. M ,  N >. ) `  k
) )
10944, 50, 108eqfnfvd 5734 . . 3  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( `  A
)  =/=  0 )  /\  ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) )
110109ex 115 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( `  A
)  =/=  0 )  ->  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
11160nn0zd 9563 . . . . 5  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
112 zdceq 9518 . . . . 5  |-  ( ( ( `  A )  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( `  A )  =  0 )
113111, 7, 112sylancl 413 . . . 4  |-  ( A  e. Word  V  -> DECID  ( `  A )  =  0 )
114 dcne 2411 . . . 4  |-  (DECID  ( `  A
)  =  0  <->  (
( `  A )  =  0  \/  ( `  A
)  =/=  0 ) )
115113, 114sylib 122 . . 3  |-  ( A  e. Word  V  ->  (
( `  A )  =  0  \/  ( `  A
)  =/=  0 ) )
116115adantr 276 . 2  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  =  0  \/  ( `  A )  =/=  0 ) )
11737, 110, 116mpjaodan 803 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( M  e.  ( 0 ... N
)  /\  N  e.  ( 0 ... ( `  A ) ) )  ->  ( ( A ++  B ) substr  <. M ,  N >. )  =  ( A substr  <. M ,  N >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   <.cop 3669   class class class wbr 4082    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   RRcr 7994   0cc0 7995    + caddc 7998    < clt 8177    <_ cle 8178    - cmin 8313   NNcn 9106   NN0cn0 9365   ZZcz 9442   ...cfz 10200  ..^cfzo 10334  ♯chash 10992  Word cword 11066   ++ cconcat 11120   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173
This theorem is referenced by:  pfxccat3  11261  pfxccatpfx1  11263  swrdccatin1d  11270
  Copyright terms: Public domain W3C validator