ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrds1 GIF version

Theorem swrds1 11154
Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
swrds1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)

Proof of Theorem swrds1
StepHypRef Expression
1 simpl 109 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
2 elfzoelz 10299 . . . . 5 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
32adantl 277 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
43peano2zd 9528 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ ℤ)
5 swrdclg 11136 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ ℤ ∧ (𝐼 + 1) ∈ ℤ) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴)
61, 3, 4, 5syl3anc 1250 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴)
7 elfzouz 10303 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ (ℤ‘0))
87adantl 277 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (ℤ‘0))
9 uzid 9692 . . . . . . 7 (𝐼 ∈ ℤ → 𝐼 ∈ (ℤ𝐼))
10 peano2uz 9734 . . . . . . 7 (𝐼 ∈ (ℤ𝐼) → (𝐼 + 1) ∈ (ℤ𝐼))
113, 9, 103syl 17 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (ℤ𝐼))
12 elfzuzb 10171 . . . . . 6 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ (ℤ‘0) ∧ (𝐼 + 1) ∈ (ℤ𝐼)))
138, 11, 12sylanbrc 417 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
14 fzofzp1 10388 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
1514adantl 277 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
16 swrdlen 11138 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
171, 13, 15, 16syl3anc 1250 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
183zcnd 9526 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
19 ax-1cn 8048 . . . . 5 1 ∈ ℂ
20 pncan2 8309 . . . . 5 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) − 𝐼) = 1)
2118, 19, 20sylancl 413 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) − 𝐼) = 1)
2217, 21eqtrd 2239 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1)
23 eqs1 11115 . . 3 (((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴 ∧ (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
246, 22, 23syl2anc 411 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
25 0z 9413 . . . . . . 7 0 ∈ ℤ
26 snidg 3667 . . . . . . 7 (0 ∈ ℤ → 0 ∈ {0})
2725, 26ax-mp 5 . . . . . 6 0 ∈ {0}
2821oveq2d 5978 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = (0..^1))
29 fzo01 10377 . . . . . . 7 (0..^1) = {0}
3028, 29eqtrdi 2255 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = {0})
3127, 30eleqtrrid 2296 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 0 ∈ (0..^((𝐼 + 1) − 𝐼)))
32 swrdfv 11139 . . . . 5 (((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) ∧ 0 ∈ (0..^((𝐼 + 1) − 𝐼))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
331, 13, 15, 31, 32syl31anc 1253 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
34 addlid 8241 . . . . . . 7 (𝐼 ∈ ℂ → (0 + 𝐼) = 𝐼)
3534eqcomd 2212 . . . . . 6 (𝐼 ∈ ℂ → 𝐼 = (0 + 𝐼))
3618, 35syl 14 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 = (0 + 𝐼))
3736fveq2d 5598 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊𝐼) = (𝑊‘(0 + 𝐼)))
3833, 37eqtr4d 2242 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊𝐼))
3938s1eqd 11107 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩ = ⟨“(𝑊𝐼)”⟩)
4024, 39eqtrd 2239 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {csn 3638  cop 3641  cfv 5285  (class class class)co 5962  cc 7953  0cc0 7955  1c1 7956   + caddc 7958  cmin 8273  cz 9402  cuz 9678  ...cfz 10160  ..^cfzo 10294  chash 10952  Word cword 11026  ⟨“cs1 11102   substr csubstr 11131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-ihash 10953  df-word 11027  df-s1 11103  df-substr 11132
This theorem is referenced by:  swrdlsw  11155  pfx1  11189
  Copyright terms: Public domain W3C validator