ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgredg2vlem2 Unicode version

Theorem usgredg2vlem2 16029
Description: Lemma 2 for usgredg2v 16030. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v  |-  V  =  (Vtx `  G )
usgredg2v.e  |-  E  =  (iEdg `  G )
usgredg2v.a  |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }
Assertion
Ref Expression
usgredg2vlem2  |-  ( ( G  e. USGraph  /\  Y  e.  A )  ->  (
I  =  ( iota_ z  e.  V  ( E `
 Y )  =  { z ,  N } )  ->  ( E `  Y )  =  { I ,  N } ) )
Distinct variable groups:    x, E, z   
z, G    x, N, z    z, V    x, Y, z    z, I
Allowed substitution hints:    A( x, z)    G( x)    I( x)    V( x)

Proof of Theorem usgredg2vlem2
StepHypRef Expression
1 fveq2 5629 . . . . . 6  |-  ( x  =  Y  ->  ( E `  x )  =  ( E `  Y ) )
21eleq2d 2299 . . . . 5  |-  ( x  =  Y  ->  ( N  e.  ( E `  x )  <->  N  e.  ( E `  Y ) ) )
3 usgredg2v.a . . . . 5  |-  A  =  { x  e.  dom  E  |  N  e.  ( E `  x ) }
42, 3elrab2 2962 . . . 4  |-  ( Y  e.  A  <->  ( Y  e.  dom  E  /\  N  e.  ( E `  Y
) ) )
54biimpi 120 . . 3  |-  ( Y  e.  A  ->  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )
6 usgredg2v.v . . . . . . . 8  |-  V  =  (Vtx `  G )
7 usgredg2v.e . . . . . . . 8  |-  E  =  (iEdg `  G )
86, 7usgredgreu 16022 . . . . . . 7  |-  ( ( G  e. USGraph  /\  Y  e. 
dom  E  /\  N  e.  ( E `  Y
) )  ->  E! z  e.  V  ( E `  Y )  =  { N ,  z } )
983expb 1228 . . . . . 6  |-  ( ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )  ->  E! z  e.  V  ( E `  Y )  =  { N ,  z }
)
106, 7, 3usgredg2vlem1 16028 . . . . . . . . . . . . . . 15  |-  ( ( G  e. USGraph  /\  Y  e.  A )  ->  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  e.  V )
1110adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )  /\  Y  e.  A
)  ->  ( iota_ z  e.  V  ( E `
 Y )  =  { z ,  N } )  e.  V
)
1211ad4ant23 515 . . . . . . . . . . . . 13  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  e.  V )
13 eleq1 2292 . . . . . . . . . . . . . 14  |-  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( I  e.  V  <->  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  e.  V ) )
1413adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  ( I  e.  V  <->  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  e.  V ) )
1512, 14mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  I  e.  V
)
16 prcom 3742 . . . . . . . . . . . . . . . 16  |-  { N ,  z }  =  { z ,  N }
1716eqeq2i 2240 . . . . . . . . . . . . . . 15  |-  ( ( E `  Y )  =  { N , 
z }  <->  ( E `  Y )  =  {
z ,  N }
)
1817reubii 2718 . . . . . . . . . . . . . 14  |-  ( E! z  e.  V  ( E `  Y )  =  { N , 
z }  <->  E! z  e.  V  ( E `  Y )  =  {
z ,  N }
)
1918biimpi 120 . . . . . . . . . . . . 13  |-  ( E! z  e.  V  ( E `  Y )  =  { N , 
z }  ->  E! z  e.  V  ( E `  Y )  =  { z ,  N } )
2019ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  E! z  e.  V  ( E `  Y )  =  {
z ,  N }
)
21 preq1 3743 . . . . . . . . . . . . . 14  |-  ( z  =  I  ->  { z ,  N }  =  { I ,  N } )
2221eqeq2d 2241 . . . . . . . . . . . . 13  |-  ( z  =  I  ->  (
( E `  Y
)  =  { z ,  N }  <->  ( E `  Y )  =  {
I ,  N }
) )
2322riota2 5984 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  E! z  e.  V  ( E `  Y )  =  { z ,  N } )  -> 
( ( E `  Y )  =  {
I ,  N }  <->  (
iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  =  I ) )
2415, 20, 23syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( E! z  e.  V  ( E `
 Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e. 
dom  E  /\  N  e.  ( E `  Y
) ) ) )  /\  Y  e.  A
)  /\  I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } ) )  ->  ( ( E `
 Y )  =  { I ,  N } 
<->  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  =  I ) )
2524exbiri 382 . . . . . . . . . 10  |-  ( ( ( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  (
I  =  ( iota_ z  e.  V  ( E `
 Y )  =  { z ,  N } )  ->  (
( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  =  I  ->  ( E `  Y )  =  {
I ,  N }
) ) )
2625com13 80 . . . . . . . . 9  |-  ( (
iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  =  I  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( (
( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( E `  Y )  =  { I ,  N } ) ) )
2726eqcoms 2232 . . . . . . . 8  |-  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( (
( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( E `  Y )  =  { I ,  N } ) ) )
2827pm2.43i 49 . . . . . . 7  |-  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( (
( E! z  e.  V  ( E `  Y )  =  { N ,  z }  /\  ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  /\  Y  e.  A )  ->  ( E `  Y )  =  { I ,  N } ) )
2928expdcom 1485 . . . . . 6  |-  ( ( E! z  e.  V  ( E `  Y )  =  { N , 
z }  /\  ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) ) )  ->  ( Y  e.  A  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) )
309, 29mpancom 422 . . . . 5  |-  ( ( G  e. USGraph  /\  ( Y  e.  dom  E  /\  N  e.  ( E `  Y ) ) )  ->  ( Y  e.  A  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) )
3130expcom 116 . . . 4  |-  ( ( Y  e.  dom  E  /\  N  e.  ( E `  Y )
)  ->  ( G  e. USGraph  ->  ( Y  e.  A  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) ) )
3231com23 78 . . 3  |-  ( ( Y  e.  dom  E  /\  N  e.  ( E `  Y )
)  ->  ( Y  e.  A  ->  ( G  e. USGraph  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  { z ,  N } )  -> 
( E `  Y
)  =  { I ,  N } ) ) ) )
335, 32mpcom 36 . 2  |-  ( Y  e.  A  ->  ( G  e. USGraph  ->  ( I  =  ( iota_ z  e.  V  ( E `  Y )  =  {
z ,  N }
)  ->  ( E `  Y )  =  {
I ,  N }
) ) )
3433impcom 125 1  |-  ( ( G  e. USGraph  /\  Y  e.  A )  ->  (
I  =  ( iota_ z  e.  V  ( E `
 Y )  =  { z ,  N } )  ->  ( E `  Y )  =  { I ,  N } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E!wreu 2510   {crab 2512   {cpr 3667   dom cdm 4719   ` cfv 5318   iota_crio 5959  Vtxcvtx 15821  iEdgciedg 15822  USGraphcusgr 15960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-umgren 15902  df-usgren 15962
This theorem is referenced by:  usgredg2v  16030
  Copyright terms: Public domain W3C validator