ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgredg2vlem2 GIF version

Theorem usgredg2vlem2 15986
Description: Lemma 2 for usgredg2v 15987. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
Assertion
Ref Expression
usgredg2vlem2 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑥,𝑌,𝑧   𝑧,𝐼
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2vlem2
StepHypRef Expression
1 fveq2 5603 . . . . . 6 (𝑥 = 𝑌 → (𝐸𝑥) = (𝐸𝑌))
21eleq2d 2279 . . . . 5 (𝑥 = 𝑌 → (𝑁 ∈ (𝐸𝑥) ↔ 𝑁 ∈ (𝐸𝑌)))
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
42, 3elrab2 2942 . . . 4 (𝑌𝐴 ↔ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
54biimpi 120 . . 3 (𝑌𝐴 → (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
6 usgredg2v.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
7 usgredg2v.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
86, 7usgredgreu 15979 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
983expb 1209 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
106, 7, 3usgredg2vlem1 15985 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1110adantlr 477 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1211ad4ant23 515 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
13 eleq1 2272 . . . . . . . . . . . . . 14 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1413adantl 277 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1512, 14mpbird 167 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → 𝐼𝑉)
16 prcom 3722 . . . . . . . . . . . . . . . 16 {𝑁, 𝑧} = {𝑧, 𝑁}
1716eqeq2i 2220 . . . . . . . . . . . . . . 15 ((𝐸𝑌) = {𝑁, 𝑧} ↔ (𝐸𝑌) = {𝑧, 𝑁})
1817reubii 2698 . . . . . . . . . . . . . 14 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ↔ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
1918biimpi 120 . . . . . . . . . . . . 13 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
2019ad3antrrr 492 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
21 preq1 3723 . . . . . . . . . . . . . 14 (𝑧 = 𝐼 → {𝑧, 𝑁} = {𝐼, 𝑁})
2221eqeq2d 2221 . . . . . . . . . . . . 13 (𝑧 = 𝐼 → ((𝐸𝑌) = {𝑧, 𝑁} ↔ (𝐸𝑌) = {𝐼, 𝑁}))
2322riota2 5951 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2415, 20, 23syl2anc 411 . . . . . . . . . . 11 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2524exbiri 382 . . . . . . . . . 10 (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐸𝑌) = {𝐼, 𝑁})))
2625com13 80 . . . . . . . . 9 ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2726eqcoms 2212 . . . . . . . 8 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2827pm2.43i 49 . . . . . . 7 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁}))
2928expdcom 1465 . . . . . 6 ((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
309, 29mpancom 422 . . . . 5 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3130expcom 116 . . . 4 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝐺 ∈ USGraph → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
3231com23 78 . . 3 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
335, 32mpcom 36 . 2 (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3433impcom 125 1 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  ∃!wreu 2490  {crab 2492  {cpr 3647  dom cdm 4696  cfv 5294  crio 5926  Vtxcvtx 15778  iEdgciedg 15779  USGraphcusgr 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-umgren 15859  df-usgren 15919
This theorem is referenced by:  usgredg2v  15987
  Copyright terms: Public domain W3C validator