![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzind4 | GIF version |
Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) |
Ref | Expression |
---|---|
uzind4.1 | ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) |
uzind4.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
uzind4.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
uzind4.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
uzind4.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
uzind4.6 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
uzind4 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 8917 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | eluzelz 8921 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | eluzle 8924 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
4 | breq2 3815 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑁)) | |
5 | 4 | elrab 2759 | . . 3 ⊢ (𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
6 | 2, 3, 5 | sylanbrc 408 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) |
7 | uzind4.1 | . . 3 ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) | |
8 | uzind4.2 | . . 3 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
9 | uzind4.3 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
10 | uzind4.4 | . . 3 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
11 | uzind4.5 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
12 | breq2 3815 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑘)) | |
13 | 12 | elrab 2759 | . . . . 5 ⊢ (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
14 | eluz2 8918 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
15 | 14 | biimpri 131 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑀)) |
16 | 15 | 3expb 1140 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
17 | 13, 16 | sylan2b 281 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝑘 ∈ (ℤ≥‘𝑀)) |
18 | uzind4.6 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) | |
19 | 17, 18 | syl 14 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → (𝜒 → 𝜃)) |
20 | 7, 8, 9, 10, 11, 19 | uzind3 8753 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝜏) |
21 | 1, 6, 20 | syl2anc 403 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 {crab 2357 class class class wbr 3811 ‘cfv 4967 (class class class)co 5589 1c1 7252 + caddc 7254 ≤ cle 7424 ℤcz 8644 ℤ≥cuz 8912 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-addcom 7346 ax-addass 7348 ax-distr 7350 ax-i2m1 7351 ax-0lt1 7352 ax-0id 7354 ax-rnegex 7355 ax-cnre 7357 ax-pre-ltirr 7358 ax-pre-ltwlin 7359 ax-pre-lttrn 7360 ax-pre-ltadd 7362 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4083 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-res 4411 df-ima 4412 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-pnf 7425 df-mnf 7426 df-xr 7427 df-ltxr 7428 df-le 7429 df-sub 7556 df-neg 7557 df-inn 8315 df-n0 8564 df-z 8645 df-uz 8913 |
This theorem is referenced by: uzind4ALT 8970 uzind4s 8971 uzind4s2 8972 uzind4i 8973 frec2uzrand 9699 uzsinds 9735 iseqoveq 9757 iseqss 9758 iseqsst 9759 iseqfveq2 9761 iseqshft2 9765 monoord 9768 iseqsplit 9771 iseqid2 9781 iseqhomo 9782 iseqz 9783 leexp2r 9844 dvdsfac 10639 zsupcllemex 10720 |
Copyright terms: Public domain | W3C validator |