| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uzind4 | GIF version | ||
| Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| uzind4.1 | ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) | 
| uzind4.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | 
| uzind4.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | 
| uzind4.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | 
| uzind4.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) | 
| uzind4.6 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) | 
| Ref | Expression | 
|---|---|
| uzind4 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluzel2 9606 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 2 | eluzelz 9610 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 3 | eluzle 9613 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
| 4 | breq2 4037 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑁)) | |
| 5 | 4 | elrab 2920 | . . 3 ⊢ (𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | 
| 6 | 2, 3, 5 | sylanbrc 417 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) | 
| 7 | uzind4.1 | . . 3 ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) | |
| 8 | uzind4.2 | . . 3 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
| 9 | uzind4.3 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
| 10 | uzind4.4 | . . 3 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
| 11 | uzind4.5 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
| 12 | breq2 4037 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑘)) | |
| 13 | 12 | elrab 2920 | . . . . 5 ⊢ (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | 
| 14 | eluz2 9607 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
| 15 | 14 | biimpri 133 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 16 | 15 | 3expb 1206 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 17 | 13, 16 | sylan2b 287 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 18 | uzind4.6 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) | |
| 19 | 17, 18 | syl 14 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → (𝜒 → 𝜃)) | 
| 20 | 7, 8, 9, 10, 11, 19 | uzind3 9439 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝜏) | 
| 21 | 1, 6, 20 | syl2anc 411 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 1c1 7880 + caddc 7882 ≤ cle 8062 ℤcz 9326 ℤ≥cuz 9601 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: uzind4ALT 9663 uzind4s 9664 uzind4s2 9665 uzind4i 9666 zsupcllemex 10320 frec2uzrand 10497 uzsinds 10536 seq3fveq2 10567 seq3shft2 10573 seqshft2g 10574 monoord 10577 seq3split 10580 seqsplitg 10581 seqf1og 10613 seq3id2 10618 seq3homo 10619 seq3z 10620 leexp2r 10685 cvgratnnlemnexp 11689 cvgratnnlemmn 11690 clim2prod 11704 fprodabs 11781 dvdsfac 12025 ennnfonelemkh 12629 gsumfzconst 13471 | 
| Copyright terms: Public domain | W3C validator |