ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4 GIF version

Theorem uzind4 8969
Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind4.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind4.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind4.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind4.5 (𝑀 ∈ ℤ → 𝜓)
uzind4.6 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
Assertion
Ref Expression
uzind4 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 8917 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 8921 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 eluzle 8924 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
4 breq2 3815 . . . 4 (𝑚 = 𝑁 → (𝑀𝑚𝑀𝑁))
54elrab 2759 . . 3 (𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
62, 3, 5sylanbrc 408 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚})
7 uzind4.1 . . 3 (𝑗 = 𝑀 → (𝜑𝜓))
8 uzind4.2 . . 3 (𝑗 = 𝑘 → (𝜑𝜒))
9 uzind4.3 . . 3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
10 uzind4.4 . . 3 (𝑗 = 𝑁 → (𝜑𝜏))
11 uzind4.5 . . 3 (𝑀 ∈ ℤ → 𝜓)
12 breq2 3815 . . . . . 6 (𝑚 = 𝑘 → (𝑀𝑚𝑀𝑘))
1312elrab 2759 . . . . 5 (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘))
14 eluz2 8918 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
1514biimpri 131 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → 𝑘 ∈ (ℤ𝑀))
16153expb 1140 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝑘 ∈ (ℤ𝑀))
1713, 16sylan2b 281 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝑘 ∈ (ℤ𝑀))
18 uzind4.6 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
1917, 18syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → (𝜒𝜃))
207, 8, 9, 10, 11, 19uzind3 8753 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝜏)
211, 6, 20syl2anc 403 1 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  {crab 2357   class class class wbr 3811  cfv 4967  (class class class)co 5589  1c1 7252   + caddc 7254  cle 7424  cz 8644  cuz 8912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-addcom 7346  ax-addass 7348  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-0id 7354  ax-rnegex 7355  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-ltadd 7362
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-inn 8315  df-n0 8564  df-z 8645  df-uz 8913
This theorem is referenced by:  uzind4ALT  8970  uzind4s  8971  uzind4s2  8972  uzind4i  8973  frec2uzrand  9699  uzsinds  9735  iseqoveq  9757  iseqss  9758  iseqsst  9759  iseqfveq2  9761  iseqshft2  9765  monoord  9768  iseqsplit  9771  iseqid2  9781  iseqhomo  9782  iseqz  9783  leexp2r  9844  dvdsfac  10639  zsupcllemex  10720
  Copyright terms: Public domain W3C validator