| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind4 | GIF version | ||
| Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzind4.1 | ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) |
| uzind4.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
| uzind4.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
| uzind4.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
| uzind4.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
| uzind4.6 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| uzind4 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9653 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 2 | eluzelz 9657 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 3 | eluzle 9660 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
| 4 | breq2 4048 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑁)) | |
| 5 | 4 | elrab 2929 | . . 3 ⊢ (𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 6 | 2, 3, 5 | sylanbrc 417 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) |
| 7 | uzind4.1 | . . 3 ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) | |
| 8 | uzind4.2 | . . 3 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
| 9 | uzind4.3 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
| 10 | uzind4.4 | . . 3 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
| 11 | uzind4.5 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
| 12 | breq2 4048 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑘)) | |
| 13 | 12 | elrab 2929 | . . . . 5 ⊢ (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
| 14 | eluz2 9654 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
| 15 | 14 | biimpri 133 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 16 | 15 | 3expb 1207 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 17 | 13, 16 | sylan2b 287 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 18 | uzind4.6 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) | |
| 19 | 17, 18 | syl 14 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → (𝜒 → 𝜃)) |
| 20 | 7, 8, 9, 10, 11, 19 | uzind3 9486 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚}) → 𝜏) |
| 21 | 1, 6, 20 | syl2anc 411 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 {crab 2488 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 1c1 7926 + caddc 7928 ≤ cle 8108 ℤcz 9372 ℤ≥cuz 9648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: uzind4ALT 9710 uzind4s 9711 uzind4s2 9712 uzind4i 9713 zsupcllemex 10373 frec2uzrand 10550 uzsinds 10589 seq3fveq2 10620 seq3shft2 10626 seqshft2g 10627 monoord 10630 seq3split 10633 seqsplitg 10634 seqf1og 10666 seq3id2 10671 seq3homo 10672 seq3z 10673 leexp2r 10738 cvgratnnlemnexp 11835 cvgratnnlemmn 11836 clim2prod 11850 fprodabs 11927 dvdsfac 12171 ennnfonelemkh 12783 gsumfzconst 13677 |
| Copyright terms: Public domain | W3C validator |