ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4 GIF version

Theorem uzind4 9656
Description: Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind4.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind4.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind4.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind4.5 (𝑀 ∈ ℤ → 𝜓)
uzind4.6 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
Assertion
Ref Expression
uzind4 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9600 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 9604 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 eluzle 9607 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
4 breq2 4034 . . . 4 (𝑚 = 𝑁 → (𝑀𝑚𝑀𝑁))
54elrab 2917 . . 3 (𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
62, 3, 5sylanbrc 417 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚})
7 uzind4.1 . . 3 (𝑗 = 𝑀 → (𝜑𝜓))
8 uzind4.2 . . 3 (𝑗 = 𝑘 → (𝜑𝜒))
9 uzind4.3 . . 3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
10 uzind4.4 . . 3 (𝑗 = 𝑁 → (𝜑𝜏))
11 uzind4.5 . . 3 (𝑀 ∈ ℤ → 𝜓)
12 breq2 4034 . . . . . 6 (𝑚 = 𝑘 → (𝑀𝑚𝑀𝑘))
1312elrab 2917 . . . . 5 (𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚} ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘))
14 eluz2 9601 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
1514biimpri 133 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → 𝑘 ∈ (ℤ𝑀))
16153expb 1206 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝑘 ∈ (ℤ𝑀))
1713, 16sylan2b 287 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝑘 ∈ (ℤ𝑀))
18 uzind4.6 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
1917, 18syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → (𝜒𝜃))
207, 8, 9, 10, 11, 19uzind3 9433 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑚 ∈ ℤ ∣ 𝑀𝑚}) → 𝜏)
211, 6, 20syl2anc 411 1 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {crab 2476   class class class wbr 4030  cfv 5255  (class class class)co 5919  1c1 7875   + caddc 7877  cle 8057  cz 9320  cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  uzind4ALT  9657  uzind4s  9658  uzind4s2  9659  uzind4i  9660  frec2uzrand  10479  uzsinds  10518  seq3fveq2  10549  seq3shft2  10555  seqshft2g  10556  monoord  10559  seq3split  10562  seqsplitg  10563  seqf1og  10595  seq3id2  10600  seq3homo  10601  seq3z  10602  leexp2r  10667  cvgratnnlemnexp  11670  cvgratnnlemmn  11671  clim2prod  11685  fprodabs  11762  dvdsfac  12005  zsupcllemex  12086  ennnfonelemkh  12572  gsumfzconst  13414
  Copyright terms: Public domain W3C validator