ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlkv0 Unicode version

Theorem wlkv0 16080
Description: If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
Assertion
Ref Expression
wlkv0  |-  ( ( (Vtx `  G )  =  (/)  /\  W  e.  (Walks `  G )
)  ->  ( ( 1st `  W )  =  (/)  /\  ( 2nd `  W
)  =  (/) ) )

Proof of Theorem wlkv0
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
21wlkf 16042 . . . 4  |-  ( ( 1st `  W ) (Walks `  G )
( 2nd `  W
)  ->  ( 1st `  W )  e. Word  dom  (iEdg `  G ) )
3 eqid 2229 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
43wlkp 16046 . . . 4  |-  ( ( 1st `  W ) (Walks `  G )
( 2nd `  W
)  ->  ( 2nd `  W ) : ( 0 ... ( `  ( 1st `  W ) ) ) --> (Vtx `  G
) )
52, 4jca 306 . . 3  |-  ( ( 1st `  W ) (Walks `  G )
( 2nd `  W
)  ->  ( ( 1st `  W )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  W
) : ( 0 ... ( `  ( 1st `  W ) ) ) --> (Vtx `  G
) ) )
6 feq3 5458 . . . . . 6  |-  ( (Vtx
`  G )  =  (/)  ->  ( ( 2nd `  W ) : ( 0 ... ( `  ( 1st `  W ) ) ) --> (Vtx `  G
)  <->  ( 2nd `  W
) : ( 0 ... ( `  ( 1st `  W ) ) ) --> (/) ) )
7 f00 5517 . . . . . 6  |-  ( ( 2nd `  W ) : ( 0 ... ( `  ( 1st `  W ) ) ) -->
(/) 
<->  ( ( 2nd `  W
)  =  (/)  /\  (
0 ... ( `  ( 1st `  W ) ) )  =  (/) ) )
86, 7bitrdi 196 . . . . 5  |-  ( (Vtx
`  G )  =  (/)  ->  ( ( 2nd `  W ) : ( 0 ... ( `  ( 1st `  W ) ) ) --> (Vtx `  G
)  <->  ( ( 2nd `  W )  =  (/)  /\  ( 0 ... ( `  ( 1st `  W
) ) )  =  (/) ) ) )
9 0z 9457 . . . . . . . . . . . 12  |-  0  e.  ZZ
10 nn0z 9466 . . . . . . . . . . . 12  |-  ( ( `  ( 1st `  W
) )  e.  NN0  ->  ( `  ( 1st `  W ) )  e.  ZZ )
11 fzn 10238 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  ( `  ( 1st `  W
) )  e.  ZZ )  ->  ( ( `  ( 1st `  W ) )  <  0  <->  ( 0 ... ( `  ( 1st `  W ) ) )  =  (/) ) )
129, 10, 11sylancr 414 . . . . . . . . . . 11  |-  ( ( `  ( 1st `  W
) )  e.  NN0  ->  ( ( `  ( 1st `  W ) )  <  0  <->  ( 0 ... ( `  ( 1st `  W ) ) )  =  (/) ) )
13 nn0nlt0 9395 . . . . . . . . . . . 12  |-  ( ( `  ( 1st `  W
) )  e.  NN0  ->  -.  ( `  ( 1st `  W ) )  <  0 )
1413pm2.21d 622 . . . . . . . . . . 11  |-  ( ( `  ( 1st `  W
) )  e.  NN0  ->  ( ( `  ( 1st `  W ) )  <  0  ->  ( 1st `  W )  =  (/) ) )
1512, 14sylbird 170 . . . . . . . . . 10  |-  ( ( `  ( 1st `  W
) )  e.  NN0  ->  ( ( 0 ... ( `  ( 1st `  W ) ) )  =  (/)  ->  ( 1st `  W )  =  (/) ) )
1615com12 30 . . . . . . . . 9  |-  ( ( 0 ... ( `  ( 1st `  W ) ) )  =  (/)  ->  (
( `  ( 1st `  W
) )  e.  NN0  ->  ( 1st `  W
)  =  (/) ) )
1716adantl 277 . . . . . . . 8  |-  ( ( ( 2nd `  W
)  =  (/)  /\  (
0 ... ( `  ( 1st `  W ) ) )  =  (/) )  -> 
( ( `  ( 1st `  W ) )  e.  NN0  ->  ( 1st `  W )  =  (/) ) )
18 lencl 11075 . . . . . . . 8  |-  ( ( 1st `  W )  e. Word  dom  (iEdg `  G
)  ->  ( `  ( 1st `  W ) )  e.  NN0 )
1917, 18impel 280 . . . . . . 7  |-  ( ( ( ( 2nd `  W
)  =  (/)  /\  (
0 ... ( `  ( 1st `  W ) ) )  =  (/) )  /\  ( 1st `  W )  e. Word  dom  (iEdg `  G
) )  ->  ( 1st `  W )  =  (/) )
20 simpll 527 . . . . . . 7  |-  ( ( ( ( 2nd `  W
)  =  (/)  /\  (
0 ... ( `  ( 1st `  W ) ) )  =  (/) )  /\  ( 1st `  W )  e. Word  dom  (iEdg `  G
) )  ->  ( 2nd `  W )  =  (/) )
2119, 20jca 306 . . . . . 6  |-  ( ( ( ( 2nd `  W
)  =  (/)  /\  (
0 ... ( `  ( 1st `  W ) ) )  =  (/) )  /\  ( 1st `  W )  e. Word  dom  (iEdg `  G
) )  ->  (
( 1st `  W
)  =  (/)  /\  ( 2nd `  W )  =  (/) ) )
2221ex 115 . . . . 5  |-  ( ( ( 2nd `  W
)  =  (/)  /\  (
0 ... ( `  ( 1st `  W ) ) )  =  (/) )  -> 
( ( 1st `  W
)  e. Word  dom  (iEdg `  G )  ->  (
( 1st `  W
)  =  (/)  /\  ( 2nd `  W )  =  (/) ) ) )
238, 22biimtrdi 163 . . . 4  |-  ( (Vtx
`  G )  =  (/)  ->  ( ( 2nd `  W ) : ( 0 ... ( `  ( 1st `  W ) ) ) --> (Vtx `  G
)  ->  ( ( 1st `  W )  e. Word  dom  (iEdg `  G )  ->  ( ( 1st `  W
)  =  (/)  /\  ( 2nd `  W )  =  (/) ) ) ) )
2423impcomd 255 . . 3  |-  ( (Vtx
`  G )  =  (/)  ->  ( ( ( 1st `  W )  e. Word  dom  (iEdg `  G
)  /\  ( 2nd `  W ) : ( 0 ... ( `  ( 1st `  W ) ) ) --> (Vtx `  G
) )  ->  (
( 1st `  W
)  =  (/)  /\  ( 2nd `  W )  =  (/) ) ) )
255, 24syl5 32 . 2  |-  ( (Vtx
`  G )  =  (/)  ->  ( ( 1st `  W ) (Walks `  G ) ( 2nd `  W )  ->  (
( 1st `  W
)  =  (/)  /\  ( 2nd `  W )  =  (/) ) ) )
26 wlkcprim 16061 . 2  |-  ( W  e.  (Walks `  G
)  ->  ( 1st `  W ) (Walks `  G ) ( 2nd `  W ) )
2725, 26impel 280 1  |-  ( ( (Vtx `  G )  =  (/)  /\  W  e.  (Walks `  G )
)  ->  ( ( 1st `  W )  =  (/)  /\  ( 2nd `  W
)  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   (/)c0 3491   class class class wbr 4083   dom cdm 4719   -->wf 5314   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   0cc0 7999    < clt 8181   NN0cn0 9369   ZZcz 9446   ...cfz 10204  ♯chash 10997  Word cword 11071  Vtxcvtx 15813  iEdgciedg 15814  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-wlks 16031
This theorem is referenced by:  g0wlk0  16081
  Copyright terms: Public domain W3C validator