Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2omap GIF version

Theorem 2omap 16006
Description: Mapping between (2o𝑚 𝐴) and decidable subsets of 𝐴. (Contributed by Jim Kingdon, 12-Nov-2025.)
Hypothesis
Ref Expression
2omap.f 𝐹 = (𝑠 ∈ (2o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
Assertion
Ref Expression
2omap (𝐴𝑉𝐹:(2o𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})
Distinct variable groups:   𝐴,𝑠,𝑦,𝑧,𝑥   𝑉,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥)

Proof of Theorem 2omap
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2omap.f . 2 𝐹 = (𝑠 ∈ (2o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
2 eleq2 2270 . . . . 5 (𝑥 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} → (𝑦𝑥𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
32dcbid 840 . . . 4 (𝑥 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} → (DECID 𝑦𝑥DECID 𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
43ralbidv 2507 . . 3 (𝑥 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} → (∀𝑦𝐴 DECID 𝑦𝑥 ↔ ∀𝑦𝐴 DECID 𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
5 ssrab2 3279 . . . . 5 {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ⊆ 𝐴
6 elpw2g 4204 . . . . 5 (𝐴𝑉 → ({𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴 ↔ {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ⊆ 𝐴))
75, 6mpbiri 168 . . . 4 (𝐴𝑉 → {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴)
87adantr 276 . . 3 ((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) → {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴)
9 2ssom 6617 . . . . . . 7 2o ⊆ ω
10 elmapi 6764 . . . . . . . . 9 (𝑠 ∈ (2o𝑚 𝐴) → 𝑠:𝐴⟶2o)
1110ad2antlr 489 . . . . . . . 8 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → 𝑠:𝐴⟶2o)
12 simpr 110 . . . . . . . 8 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → 𝑦𝐴)
1311, 12ffvelcdmd 5723 . . . . . . 7 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → (𝑠𝑦) ∈ 2o)
149, 13sselid 3192 . . . . . 6 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → (𝑠𝑦) ∈ ω)
15 1onn 6613 . . . . . 6 1o ∈ ω
16 nndceq 6592 . . . . . 6 (((𝑠𝑦) ∈ ω ∧ 1o ∈ ω) → DECID (𝑠𝑦) = 1o)
1714, 15, 16sylancl 413 . . . . 5 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → DECID (𝑠𝑦) = 1o)
18 ibar 301 . . . . . . . 8 (𝑦𝐴 → ((𝑠𝑦) = 1o ↔ (𝑦𝐴 ∧ (𝑠𝑦) = 1o)))
1918adantl 277 . . . . . . 7 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → ((𝑠𝑦) = 1o ↔ (𝑦𝐴 ∧ (𝑠𝑦) = 1o)))
20 fveqeq2 5592 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑠𝑧) = 1o ↔ (𝑠𝑦) = 1o))
2120elrab 2930 . . . . . . 7 (𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ (𝑦𝐴 ∧ (𝑠𝑦) = 1o))
2219, 21bitr4di 198 . . . . . 6 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → ((𝑠𝑦) = 1o𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
2322dcbid 840 . . . . 5 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → (DECID (𝑠𝑦) = 1oDECID 𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
2417, 23mpbid 147 . . . 4 (((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) ∧ 𝑦𝐴) → DECID 𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
2524ralrimiva 2580 . . 3 ((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) → ∀𝑦𝐴 DECID 𝑦 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
264, 8, 25elrabd 2932 . 2 ((𝐴𝑉𝑠 ∈ (2o𝑚 𝐴)) → {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})
27 eleq2 2270 . . . . . 6 (𝑥 = 𝑤 → (𝑦𝑥𝑦𝑤))
2827dcbid 840 . . . . 5 (𝑥 = 𝑤 → (DECID 𝑦𝑥DECID 𝑦𝑤))
2928ralbidv 2507 . . . 4 (𝑥 = 𝑤 → (∀𝑦𝐴 DECID 𝑦𝑥 ↔ ∀𝑦𝐴 DECID 𝑦𝑤))
3029elrab 2930 . . 3 (𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥} ↔ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))
31 1lt2o 6535 . . . . . . 7 1o ∈ 2o
3231a1i 9 . . . . . 6 (((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) ∧ 𝑢𝐴) → 1o ∈ 2o)
33 0lt2o 6534 . . . . . . 7 ∅ ∈ 2o
3433a1i 9 . . . . . 6 (((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) ∧ 𝑢𝐴) → ∅ ∈ 2o)
35 elequ1 2181 . . . . . . . 8 (𝑦 = 𝑢 → (𝑦𝑤𝑢𝑤))
3635dcbid 840 . . . . . . 7 (𝑦 = 𝑢 → (DECID 𝑦𝑤DECID 𝑢𝑤))
37 simplrr 536 . . . . . . 7 (((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) ∧ 𝑢𝐴) → ∀𝑦𝐴 DECID 𝑦𝑤)
38 simpr 110 . . . . . . 7 (((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) ∧ 𝑢𝐴) → 𝑢𝐴)
3936, 37, 38rspcdva 2883 . . . . . 6 (((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) ∧ 𝑢𝐴) → DECID 𝑢𝑤)
4032, 34, 39ifcldcd 3609 . . . . 5 (((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) ∧ 𝑢𝐴) → if(𝑢𝑤, 1o, ∅) ∈ 2o)
4140fmpttd 5742 . . . 4 ((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) → (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)):𝐴⟶2o)
42 2onn 6614 . . . . . 6 2o ∈ ω
4342a1i 9 . . . . 5 ((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) → 2o ∈ ω)
44 simpl 109 . . . . 5 ((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) → 𝐴𝑉)
4543, 44elmapd 6756 . . . 4 ((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) → ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ∈ (2o𝑚 𝐴) ↔ (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)):𝐴⟶2o))
4641, 45mpbird 167 . . 3 ((𝐴𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) → (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ∈ (2o𝑚 𝐴))
4730, 46sylan2b 287 . 2 ((𝐴𝑉𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥}) → (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ∈ (2o𝑚 𝐴))
4830anbi2i 457 . . 3 ((𝑠 ∈ (2o𝑚 𝐴) ∧ 𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥}) ↔ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)))
49 simpr 110 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ 𝑧𝑤) → 𝑧𝑤)
50 simplr 528 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
5150fveq1d 5585 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑠𝑧) = ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))‘𝑧))
52 eqid 2206 . . . . . . . . . . . 12 (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))
53 elequ1 2181 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑢𝑤𝑧𝑤))
5453ifbid 3593 . . . . . . . . . . . 12 (𝑢 = 𝑧 → if(𝑢𝑤, 1o, ∅) = if(𝑧𝑤, 1o, ∅))
55 simpr 110 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → 𝑧𝐴)
5631a1i 9 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → 1o ∈ 2o)
5733a1i 9 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → ∅ ∈ 2o)
58 elequ1 2181 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦𝑤𝑧𝑤))
5958dcbid 840 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (DECID 𝑦𝑤DECID 𝑧𝑤))
60 simprrr 540 . . . . . . . . . . . . . . 15 ((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) → ∀𝑦𝐴 DECID 𝑦𝑤)
6160ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → ∀𝑦𝐴 DECID 𝑦𝑤)
6259, 61, 55rspcdva 2883 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → DECID 𝑧𝑤)
6356, 57, 62ifcldcd 3609 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → if(𝑧𝑤, 1o, ∅) ∈ 2o)
6452, 54, 55, 63fvmptd3 5680 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))‘𝑧) = if(𝑧𝑤, 1o, ∅))
6551, 64eqtrd 2239 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑠𝑧) = if(𝑧𝑤, 1o, ∅))
6665adantr 276 . . . . . . . . 9 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ 𝑧𝑤) → (𝑠𝑧) = if(𝑧𝑤, 1o, ∅))
6749iftrued 3579 . . . . . . . . 9 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ 𝑧𝑤) → if(𝑧𝑤, 1o, ∅) = 1o)
6866, 67eqtrd 2239 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ 𝑧𝑤) → (𝑠𝑧) = 1o)
6949, 682thd 175 . . . . . . 7 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ 𝑧𝑤) → (𝑧𝑤 ↔ (𝑠𝑧) = 1o))
70 simpr 110 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ ¬ 𝑧𝑤) → ¬ 𝑧𝑤)
71 1n0 6525 . . . . . . . . . 10 1o ≠ ∅
7271nesymi 2423 . . . . . . . . 9 ¬ ∅ = 1o
7365adantr 276 . . . . . . . . . . 11 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ ¬ 𝑧𝑤) → (𝑠𝑧) = if(𝑧𝑤, 1o, ∅))
7470iffalsed 3582 . . . . . . . . . . 11 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ ¬ 𝑧𝑤) → if(𝑧𝑤, 1o, ∅) = ∅)
7573, 74eqtrd 2239 . . . . . . . . . 10 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ ¬ 𝑧𝑤) → (𝑠𝑧) = ∅)
7675eqeq1d 2215 . . . . . . . . 9 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ ¬ 𝑧𝑤) → ((𝑠𝑧) = 1o ↔ ∅ = 1o))
7772, 76mtbiri 677 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ ¬ 𝑧𝑤) → ¬ (𝑠𝑧) = 1o)
7870, 772falsed 704 . . . . . . 7 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) ∧ ¬ 𝑧𝑤) → (𝑧𝑤 ↔ (𝑠𝑧) = 1o))
79 exmiddc 838 . . . . . . . 8 (DECID 𝑧𝑤 → (𝑧𝑤 ∨ ¬ 𝑧𝑤))
8062, 79syl 14 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑧𝑤 ∨ ¬ 𝑧𝑤))
8169, 78, 80mpjaodan 800 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑧𝑤 ↔ (𝑠𝑧) = 1o))
8281rabbidva 2761 . . . . 5 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
83 elpwi 3626 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝐴𝑤𝐴)
84 dfss1 3378 . . . . . . . . . 10 (𝑤𝐴 ↔ (𝐴𝑤) = 𝑤)
8583, 84sylib 122 . . . . . . . . 9 (𝑤 ∈ 𝒫 𝐴 → (𝐴𝑤) = 𝑤)
86 dfin5 3174 . . . . . . . . 9 (𝐴𝑤) = {𝑧𝐴𝑧𝑤}
8785, 86eqtr3di 2254 . . . . . . . 8 (𝑤 ∈ 𝒫 𝐴𝑤 = {𝑧𝐴𝑧𝑤})
8887eqeq1d 2215 . . . . . . 7 (𝑤 ∈ 𝒫 𝐴 → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
8988ad2antrl 490 . . . . . 6 ((𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤)) → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
9089ad2antlr 489 . . . . 5 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
9182, 90mpbird 167 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
92 simplrl 535 . . . . . . 7 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 ∈ (2o𝑚 𝐴))
9342a1i 9 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 2o ∈ ω)
94 simpll 527 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝐴𝑉)
9593, 94elmapd 6756 . . . . . . 7 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑠 ∈ (2o𝑚 𝐴) ↔ 𝑠:𝐴⟶2o))
9692, 95mpbid 147 . . . . . 6 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠:𝐴⟶2o)
9796feqmptd 5639 . . . . 5 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 = (𝑢𝐴 ↦ (𝑠𝑢)))
98 simpr 110 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
9998eleq2d 2276 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝑤𝑢 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
100 fveqeq2 5592 . . . . . . . . . . . 12 (𝑧 = 𝑢 → ((𝑠𝑧) = 1o ↔ (𝑠𝑢) = 1o))
101100elrab 2930 . . . . . . . . . . 11 (𝑢 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ (𝑢𝐴 ∧ (𝑠𝑢) = 1o))
10299, 101bitrdi 196 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝑤 ↔ (𝑢𝐴 ∧ (𝑠𝑢) = 1o)))
103102baibd 925 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑢𝑤 ↔ (𝑠𝑢) = 1o))
104103biimpa 296 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ 𝑢𝑤) → (𝑠𝑢) = 1o)
105 simpr 110 . . . . . . . . 9 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ 𝑢𝑤) → 𝑢𝑤)
106105iftrued 3579 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ 𝑢𝑤) → if(𝑢𝑤, 1o, ∅) = 1o)
107104, 106eqtr4d 2242 . . . . . . 7 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ 𝑢𝑤) → (𝑠𝑢) = if(𝑢𝑤, 1o, ∅))
108 simpr 110 . . . . . . . . . 10 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ ¬ 𝑢𝑤) → ¬ 𝑢𝑤)
109 simpr 110 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → 𝑢𝐴)
110 simplr 528 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
111110eleq2d 2276 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑢𝑤𝑢 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
112111, 101bitrdi 196 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑢𝑤 ↔ (𝑢𝐴 ∧ (𝑠𝑢) = 1o)))
113109, 112mpbirand 441 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑢𝑤 ↔ (𝑠𝑢) = 1o))
114113adantr 276 . . . . . . . . . 10 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ ¬ 𝑢𝑤) → (𝑢𝑤 ↔ (𝑠𝑢) = 1o))
115108, 114mtbid 674 . . . . . . . . 9 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ ¬ 𝑢𝑤) → ¬ (𝑠𝑢) = 1o)
11696adantr 276 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → 𝑠:𝐴⟶2o)
117116, 109ffvelcdmd 5723 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑠𝑢) ∈ 2o)
118 df2o3 6523 . . . . . . . . . . . 12 2o = {∅, 1o}
119117, 118eleqtrdi 2299 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑠𝑢) ∈ {∅, 1o})
120 elpri 3657 . . . . . . . . . . 11 ((𝑠𝑢) ∈ {∅, 1o} → ((𝑠𝑢) = ∅ ∨ (𝑠𝑢) = 1o))
121119, 120syl 14 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → ((𝑠𝑢) = ∅ ∨ (𝑠𝑢) = 1o))
122121adantr 276 . . . . . . . . 9 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ ¬ 𝑢𝑤) → ((𝑠𝑢) = ∅ ∨ (𝑠𝑢) = 1o))
123115, 122ecased 1362 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ ¬ 𝑢𝑤) → (𝑠𝑢) = ∅)
124108iffalsed 3582 . . . . . . . 8 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ ¬ 𝑢𝑤) → if(𝑢𝑤, 1o, ∅) = ∅)
125123, 124eqtr4d 2242 . . . . . . 7 (((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) ∧ ¬ 𝑢𝑤) → (𝑠𝑢) = if(𝑢𝑤, 1o, ∅))
12660ad2antrr 488 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → ∀𝑦𝐴 DECID 𝑦𝑤)
12736, 126, 109rspcdva 2883 . . . . . . . 8 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → DECID 𝑢𝑤)
128 exmiddc 838 . . . . . . . 8 (DECID 𝑢𝑤 → (𝑢𝑤 ∨ ¬ 𝑢𝑤))
129127, 128syl 14 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑢𝑤 ∨ ¬ 𝑢𝑤))
130107, 125, 129mpjaodan 800 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑠𝑢) = if(𝑢𝑤, 1o, ∅))
131130mpteq2dva 4138 . . . . 5 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝐴 ↦ (𝑠𝑢)) = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
13297, 131eqtrd 2239 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
13391, 132impbida 596 . . 3 ((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦𝐴 DECID 𝑦𝑤))) → (𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ↔ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
13448, 133sylan2b 287 . 2 ((𝐴𝑉 ∧ (𝑠 ∈ (2o𝑚 𝐴) ∧ 𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})) → (𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ↔ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
1351, 26, 47, 134f1o2d 6158 1 (𝐴𝑉𝐹:(2o𝑚 𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦𝐴 DECID 𝑦𝑥})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  {crab 2489  cin 3166  wss 3167  c0 3461  ifcif 3572  𝒫 cpw 3617  {cpr 3635  cmpt 4109  ωcom 4642  wf 5272  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  1oc1o 6502  2oc2o 6503  𝑚 cmap 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-map 6744
This theorem is referenced by:  2omapen  16007
  Copyright terms: Public domain W3C validator