| Step | Hyp | Ref
| Expression |
| 1 | | 2omap.f |
. 2
⊢ 𝐹 = (𝑠 ∈ (2o
↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 2 | | eleq2 2260 |
. . . . 5
⊢ (𝑥 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 3 | 2 | dcbid 839 |
. . . 4
⊢ (𝑥 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} →
(DECID 𝑦
∈ 𝑥 ↔
DECID 𝑦
∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 4 | 3 | ralbidv 2497 |
. . 3
⊢ (𝑥 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} → (∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 5 | | ssrab2 3269 |
. . . . 5
⊢ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ⊆ 𝐴 |
| 6 | | elpw2g 4190 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ({𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ∈ 𝒫 𝐴 ↔ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ⊆ 𝐴)) |
| 7 | 5, 6 | mpbiri 168 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ∈ 𝒫 𝐴) |
| 8 | 7 | adantr 276 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) → {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ∈ 𝒫 𝐴) |
| 9 | | 2ssom 6591 |
. . . . . . 7
⊢
2o ⊆ ω |
| 10 | | elmapi 6738 |
. . . . . . . . 9
⊢ (𝑠 ∈ (2o
↑𝑚 𝐴) → 𝑠:𝐴⟶2o) |
| 11 | 10 | ad2antlr 489 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑠:𝐴⟶2o) |
| 12 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 13 | 11, 12 | ffvelcdmd 5701 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → (𝑠‘𝑦) ∈ 2o) |
| 14 | 9, 13 | sselid 3182 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → (𝑠‘𝑦) ∈ ω) |
| 15 | | 1onn 6587 |
. . . . . 6
⊢
1o ∈ ω |
| 16 | | nndceq 6566 |
. . . . . 6
⊢ (((𝑠‘𝑦) ∈ ω ∧ 1o ∈
ω) → DECID (𝑠‘𝑦) = 1o) |
| 17 | 14, 15, 16 | sylancl 413 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → DECID (𝑠‘𝑦) = 1o) |
| 18 | | ibar 301 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → ((𝑠‘𝑦) = 1o ↔ (𝑦 ∈ 𝐴 ∧ (𝑠‘𝑦) = 1o))) |
| 19 | 18 | adantl 277 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → ((𝑠‘𝑦) = 1o ↔ (𝑦 ∈ 𝐴 ∧ (𝑠‘𝑦) = 1o))) |
| 20 | | fveqeq2 5570 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝑠‘𝑧) = 1o ↔ (𝑠‘𝑦) = 1o)) |
| 21 | 20 | elrab 2920 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ (𝑦 ∈ 𝐴 ∧ (𝑠‘𝑦) = 1o)) |
| 22 | 19, 21 | bitr4di 198 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → ((𝑠‘𝑦) = 1o ↔ 𝑦 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 23 | 22 | dcbid 839 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → (DECID (𝑠‘𝑦) = 1o ↔ DECID
𝑦 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 24 | 17, 23 | mpbid 147 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) ∧ 𝑦 ∈ 𝐴) → DECID 𝑦 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 25 | 24 | ralrimiva 2570 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) → ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 26 | 4, 8, 25 | elrabd 2922 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (2o
↑𝑚 𝐴)) → {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |
| 27 | | eleq2 2260 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑤)) |
| 28 | 27 | dcbid 839 |
. . . . 5
⊢ (𝑥 = 𝑤 → (DECID 𝑦 ∈ 𝑥 ↔ DECID 𝑦 ∈ 𝑤)) |
| 29 | 28 | ralbidv 2497 |
. . . 4
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) |
| 30 | 29 | elrab 2920 |
. . 3
⊢ (𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥} ↔ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) |
| 31 | | 1lt2o 6509 |
. . . . . . 7
⊢
1o ∈ 2o |
| 32 | 31 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) ∧ 𝑢 ∈ 𝐴) → 1o ∈
2o) |
| 33 | | 0lt2o 6508 |
. . . . . . 7
⊢ ∅
∈ 2o |
| 34 | 33 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) ∧ 𝑢 ∈ 𝐴) → ∅ ∈
2o) |
| 35 | | elequ1 2171 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 ∈ 𝑤 ↔ 𝑢 ∈ 𝑤)) |
| 36 | 35 | dcbid 839 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (DECID 𝑦 ∈ 𝑤 ↔ DECID 𝑢 ∈ 𝑤)) |
| 37 | | simplrr 536 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) ∧ 𝑢 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤) |
| 38 | | simpr 110 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
| 39 | 36, 37, 38 | rspcdva 2873 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) ∧ 𝑢 ∈ 𝐴) → DECID 𝑢 ∈ 𝑤) |
| 40 | 32, 34, 39 | ifcldcd 3598 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) ∧ 𝑢 ∈ 𝐴) → if(𝑢 ∈ 𝑤, 1o, ∅) ∈
2o) |
| 41 | 40 | fmpttd 5720 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) → (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)):𝐴⟶2o) |
| 42 | | 2onn 6588 |
. . . . . 6
⊢
2o ∈ ω |
| 43 | 42 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) → 2o ∈
ω) |
| 44 | | simpl 109 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) → 𝐴 ∈ 𝑉) |
| 45 | 43, 44 | elmapd 6730 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) → ((𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ∈
(2o ↑𝑚 𝐴) ↔ (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)):𝐴⟶2o)) |
| 46 | 41, 45 | mpbird 167 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) → (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ∈
(2o ↑𝑚 𝐴)) |
| 47 | 30, 46 | sylan2b 287 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) → (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ∈
(2o ↑𝑚 𝐴)) |
| 48 | 30 | anbi2i 457 |
. . 3
⊢ ((𝑠 ∈ (2o
↑𝑚 𝐴) ∧ 𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) ↔ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) |
| 49 | | simpr 110 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 ∈ 𝑤) → 𝑧 ∈ 𝑤) |
| 50 | | simplr 528 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) |
| 51 | 50 | fveq1d 5563 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → (𝑠‘𝑧) = ((𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))‘𝑧)) |
| 52 | | eqid 2196 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) |
| 53 | | elequ1 2171 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (𝑢 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
| 54 | 53 | ifbid 3583 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → if(𝑢 ∈ 𝑤, 1o, ∅) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 55 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 56 | 31 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → 1o ∈
2o) |
| 57 | 33 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → ∅ ∈
2o) |
| 58 | | elequ1 2171 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
| 59 | 58 | dcbid 839 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (DECID 𝑦 ∈ 𝑤 ↔ DECID 𝑧 ∈ 𝑤)) |
| 60 | | simprrr 540 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) → ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤) |
| 61 | 60 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤) |
| 62 | 59, 61, 55 | rspcdva 2873 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → DECID 𝑧 ∈ 𝑤) |
| 63 | 56, 57, 62 | ifcldcd 3598 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → if(𝑧 ∈ 𝑤, 1o, ∅) ∈
2o) |
| 64 | 52, 54, 55, 63 | fvmptd3 5658 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → ((𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))‘𝑧) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 65 | 51, 64 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → (𝑠‘𝑧) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 66 | 65 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 ∈ 𝑤) → (𝑠‘𝑧) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 67 | 49 | iftrued 3569 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 ∈ 𝑤) → if(𝑧 ∈ 𝑤, 1o, ∅) =
1o) |
| 68 | 66, 67 | eqtrd 2229 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 ∈ 𝑤) → (𝑠‘𝑧) = 1o) |
| 69 | 49, 68 | 2thd 175 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 ∈ 𝑤) → (𝑧 ∈ 𝑤 ↔ (𝑠‘𝑧) = 1o)) |
| 70 | | simpr 110 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝑤) → ¬ 𝑧 ∈ 𝑤) |
| 71 | | 1n0 6499 |
. . . . . . . . . 10
⊢
1o ≠ ∅ |
| 72 | 71 | nesymi 2413 |
. . . . . . . . 9
⊢ ¬
∅ = 1o |
| 73 | 65 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝑤) → (𝑠‘𝑧) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 74 | 70 | iffalsed 3572 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝑤) → if(𝑧 ∈ 𝑤, 1o, ∅) =
∅) |
| 75 | 73, 74 | eqtrd 2229 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝑤) → (𝑠‘𝑧) = ∅) |
| 76 | 75 | eqeq1d 2205 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝑤) → ((𝑠‘𝑧) = 1o ↔ ∅ =
1o)) |
| 77 | 72, 76 | mtbiri 676 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝑤) → ¬ (𝑠‘𝑧) = 1o) |
| 78 | 70, 77 | 2falsed 703 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) ∧ ¬ 𝑧 ∈ 𝑤) → (𝑧 ∈ 𝑤 ↔ (𝑠‘𝑧) = 1o)) |
| 79 | | exmiddc 837 |
. . . . . . . 8
⊢
(DECID 𝑧 ∈ 𝑤 → (𝑧 ∈ 𝑤 ∨ ¬ 𝑧 ∈ 𝑤)) |
| 80 | 62, 79 | syl 14 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑤 ∨ ¬ 𝑧 ∈ 𝑤)) |
| 81 | 69, 78, 80 | mpjaodan 799 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑤 ↔ (𝑠‘𝑧) = 1o)) |
| 82 | 81 | rabbidva 2751 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) → {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 83 | | elpwi 3615 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝒫 𝐴 → 𝑤 ⊆ 𝐴) |
| 84 | | dfss1 3368 |
. . . . . . . . . 10
⊢ (𝑤 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑤) = 𝑤) |
| 85 | 83, 84 | sylib 122 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝒫 𝐴 → (𝐴 ∩ 𝑤) = 𝑤) |
| 86 | | dfin5 3164 |
. . . . . . . . 9
⊢ (𝐴 ∩ 𝑤) = {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} |
| 87 | 85, 86 | eqtr3di 2244 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝒫 𝐴 → 𝑤 = {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤}) |
| 88 | 87 | eqeq1d 2205 |
. . . . . . 7
⊢ (𝑤 ∈ 𝒫 𝐴 → (𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 89 | 88 | ad2antrl 490 |
. . . . . 6
⊢ ((𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤)) → (𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 90 | 89 | ad2antlr 489 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) → (𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 91 | 82, 90 | mpbird 167 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) → 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 92 | | simplrl 535 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠 ∈ (2o
↑𝑚 𝐴)) |
| 93 | 42 | a1i 9 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 2o
∈ ω) |
| 94 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝐴 ∈ 𝑉) |
| 95 | 93, 94 | elmapd 6730 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑠 ∈ (2o
↑𝑚 𝐴) ↔ 𝑠:𝐴⟶2o)) |
| 96 | 92, 95 | mpbid 147 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠:𝐴⟶2o) |
| 97 | 96 | feqmptd 5617 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠 = (𝑢 ∈ 𝐴 ↦ (𝑠‘𝑢))) |
| 98 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 99 | 98 | eleq2d 2266 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑢 ∈ 𝑤 ↔ 𝑢 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 100 | | fveqeq2 5570 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑢 → ((𝑠‘𝑧) = 1o ↔ (𝑠‘𝑢) = 1o)) |
| 101 | 100 | elrab 2920 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ (𝑢 ∈ 𝐴 ∧ (𝑠‘𝑢) = 1o)) |
| 102 | 99, 101 | bitrdi 196 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑢 ∈ 𝑤 ↔ (𝑢 ∈ 𝐴 ∧ (𝑠‘𝑢) = 1o))) |
| 103 | 102 | baibd 924 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∈ 𝑤 ↔ (𝑠‘𝑢) = 1o)) |
| 104 | 103 | biimpa 296 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ∈ 𝑤) → (𝑠‘𝑢) = 1o) |
| 105 | | simpr 110 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ∈ 𝑤) → 𝑢 ∈ 𝑤) |
| 106 | 105 | iftrued 3569 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ∈ 𝑤) → if(𝑢 ∈ 𝑤, 1o, ∅) =
1o) |
| 107 | 104, 106 | eqtr4d 2232 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ∈ 𝑤) → (𝑠‘𝑢) = if(𝑢 ∈ 𝑤, 1o, ∅)) |
| 108 | | simpr 110 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ ¬ 𝑢 ∈ 𝑤) → ¬ 𝑢 ∈ 𝑤) |
| 109 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
| 110 | | simplr 528 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 111 | 110 | eleq2d 2266 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∈ 𝑤 ↔ 𝑢 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 112 | 111, 101 | bitrdi 196 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∈ 𝑤 ↔ (𝑢 ∈ 𝐴 ∧ (𝑠‘𝑢) = 1o))) |
| 113 | 109, 112 | mpbirand 441 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∈ 𝑤 ↔ (𝑠‘𝑢) = 1o)) |
| 114 | 113 | adantr 276 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ ¬ 𝑢 ∈ 𝑤) → (𝑢 ∈ 𝑤 ↔ (𝑠‘𝑢) = 1o)) |
| 115 | 108, 114 | mtbid 673 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ ¬ 𝑢 ∈ 𝑤) → ¬ (𝑠‘𝑢) = 1o) |
| 116 | 96 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → 𝑠:𝐴⟶2o) |
| 117 | 116, 109 | ffvelcdmd 5701 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑠‘𝑢) ∈ 2o) |
| 118 | | df2o3 6497 |
. . . . . . . . . . . 12
⊢
2o = {∅, 1o} |
| 119 | 117, 118 | eleqtrdi 2289 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑠‘𝑢) ∈ {∅,
1o}) |
| 120 | | elpri 3646 |
. . . . . . . . . . 11
⊢ ((𝑠‘𝑢) ∈ {∅, 1o} →
((𝑠‘𝑢) = ∅ ∨ (𝑠‘𝑢) = 1o)) |
| 121 | 119, 120 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → ((𝑠‘𝑢) = ∅ ∨ (𝑠‘𝑢) = 1o)) |
| 122 | 121 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ ¬ 𝑢 ∈ 𝑤) → ((𝑠‘𝑢) = ∅ ∨ (𝑠‘𝑢) = 1o)) |
| 123 | 115, 122 | ecased 1360 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ ¬ 𝑢 ∈ 𝑤) → (𝑠‘𝑢) = ∅) |
| 124 | 108 | iffalsed 3572 |
. . . . . . . 8
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ ¬ 𝑢 ∈ 𝑤) → if(𝑢 ∈ 𝑤, 1o, ∅) =
∅) |
| 125 | 123, 124 | eqtr4d 2232 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) ∧ ¬ 𝑢 ∈ 𝑤) → (𝑠‘𝑢) = if(𝑢 ∈ 𝑤, 1o, ∅)) |
| 126 | 60 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤) |
| 127 | 36, 126, 109 | rspcdva 2873 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → DECID 𝑢 ∈ 𝑤) |
| 128 | | exmiddc 837 |
. . . . . . . 8
⊢
(DECID 𝑢 ∈ 𝑤 → (𝑢 ∈ 𝑤 ∨ ¬ 𝑢 ∈ 𝑤)) |
| 129 | 127, 128 | syl 14 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∈ 𝑤 ∨ ¬ 𝑢 ∈ 𝑤)) |
| 130 | 107, 125,
129 | mpjaodan 799 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑠‘𝑢) = if(𝑢 ∈ 𝑤, 1o, ∅)) |
| 131 | 130 | mpteq2dva 4124 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑢 ∈ 𝐴 ↦ (𝑠‘𝑢)) = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) |
| 132 | 97, 131 | eqtrd 2229 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) |
| 133 | 91, 132 | impbida 596 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑤))) → (𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ↔ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 134 | 48, 133 | sylan2b 287 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (2o
↑𝑚 𝐴) ∧ 𝑤 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥})) → (𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ↔ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 135 | 1, 26, 47, 134 | f1o2d 6132 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑𝑚
𝐴)–1-1-onto→{𝑥 ∈ 𝒫 𝐴 ∣ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ 𝑥}) |