![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apcon4bid | GIF version |
Description: Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.) |
Ref | Expression |
---|---|
apcon4bid.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
apcon4bid.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
apcon4bid.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
apcon4bid.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
apcon4bid.1 | ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) |
Ref | Expression |
---|---|
apcon4bid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | apcon4bid.1 | . . 3 ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) | |
2 | 1 | notbid 667 | . 2 ⊢ (𝜑 → (¬ 𝐴 # 𝐵 ↔ ¬ 𝐶 # 𝐷)) |
3 | apcon4bid.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
4 | apcon4bid.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | apti 8582 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | |
6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
7 | apcon4bid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
8 | apcon4bid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | apti 8582 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 = 𝐷 ↔ ¬ 𝐶 # 𝐷)) | |
10 | 7, 8, 9 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 ↔ ¬ 𝐶 # 𝐷)) |
11 | 2, 6, 10 | 3bitr4d 220 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ℂcc 7812 # cap 8541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 |
This theorem is referenced by: mul0eqap 8630 abs00 11076 mul0inf 11252 |
Copyright terms: Public domain | W3C validator |