Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apcon4bid | GIF version |
Description: Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.) |
Ref | Expression |
---|---|
apcon4bid.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
apcon4bid.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
apcon4bid.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
apcon4bid.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
apcon4bid.1 | ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) |
Ref | Expression |
---|---|
apcon4bid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | apcon4bid.1 | . . 3 ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) | |
2 | 1 | notbid 657 | . 2 ⊢ (𝜑 → (¬ 𝐴 # 𝐵 ↔ ¬ 𝐶 # 𝐷)) |
3 | apcon4bid.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
4 | apcon4bid.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
5 | apti 8497 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | |
6 | 3, 4, 5 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) |
7 | apcon4bid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
8 | apcon4bid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | apti 8497 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 = 𝐷 ↔ ¬ 𝐶 # 𝐷)) | |
10 | 7, 8, 9 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐶 = 𝐷 ↔ ¬ 𝐶 # 𝐷)) |
11 | 2, 6, 10 | 3bitr4d 219 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 = wceq 1335 ∈ wcel 2128 class class class wbr 3965 ℂcc 7730 # cap 8456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-iota 5135 df-fun 5172 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-pnf 7914 df-mnf 7915 df-ltxr 7917 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 |
This theorem is referenced by: mul0eqap 8544 abs00 10964 mul0inf 11140 |
Copyright terms: Public domain | W3C validator |