ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmf1o GIF version

Theorem ghmf1o 13481
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1o.x 𝑋 = (Base‘𝑆)
ghmf1o.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf1o (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))

Proof of Theorem ghmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp2 13452 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
2 ghmgrp1 13451 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
31, 2jca 306 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
43adantr 276 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
5 f1ocnv 5520 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
65adantl 277 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌1-1-onto𝑋)
7 f1of 5507 . . . . 5 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
86, 7syl 14 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌𝑋)
9 simpll 527 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
108adantr 276 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑌𝑋)
11 simprl 529 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
1210, 11ffvelcdmd 5701 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑥) ∈ 𝑋)
13 simprr 531 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
1410, 13ffvelcdmd 5701 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑦) ∈ 𝑋)
15 ghmf1o.x . . . . . . . . 9 𝑋 = (Base‘𝑆)
16 eqid 2196 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
17 eqid 2196 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
1815, 16, 17ghmlin 13454 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1249 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
20 simplr 528 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑋1-1-onto𝑌)
21 f1ocnvfv2 5828 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
2220, 11, 21syl2anc 411 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑥)) = 𝑥)
23 f1ocnvfv2 5828 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
2420, 13, 23syl2anc 411 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2522, 24oveq12d 5943 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
2619, 25eqtrd 2229 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
279, 2syl 14 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑆 ∈ Grp)
2815, 16grpcl 13210 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
2927, 12, 14, 28syl3anc 1249 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
30 f1ocnvfv 5829 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3120, 29, 30syl2anc 411 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3226, 31mpd 13 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
3332ralrimivva 2579 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
348, 33jca 306 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
35 ghmf1o.y . . . 4 𝑌 = (Base‘𝑇)
3635, 15, 17, 16isghm 13449 . . 3 (𝐹 ∈ (𝑇 GrpHom 𝑆) ↔ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
374, 34, 36sylanbrc 417 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 GrpHom 𝑆))
3815, 35ghmf 13453 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
3938adantr 276 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋𝑌)
4039ffnd 5411 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑋)
4135, 15ghmf 13453 . . . . 5 (𝐹 ∈ (𝑇 GrpHom 𝑆) → 𝐹:𝑌𝑋)
4241adantl 277 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑌𝑋)
4342ffnd 5411 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑌)
44 dff1o4 5515 . . 3 (𝐹:𝑋1-1-onto𝑌 ↔ (𝐹 Fn 𝑋𝐹 Fn 𝑌))
4540, 43, 44sylanbrc 417 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
4637, 45impbida 596 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  ccnv 4663   Fn wfn 5254  wf 5255  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Grpcgrp 13202   GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-ghm 13447
This theorem is referenced by:  rhmf1o  13800
  Copyright terms: Public domain W3C validator