ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmker GIF version

Theorem ghmker 13226
Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
ghmker.1 0 = (0g𝑇)
Assertion
Ref Expression
ghmker (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝑆))

Proof of Theorem ghmker
StepHypRef Expression
1 ghmgrp2 13202 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
2 ghmker.1 . . . 4 0 = (0g𝑇)
320nsg 13170 . . 3 (𝑇 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝑇))
41, 3syl 14 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → { 0 } ∈ (NrmSGrp‘𝑇))
5 ghmnsgpreima 13225 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ { 0 } ∈ (NrmSGrp‘𝑇)) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝑆))
64, 5mpdan 421 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  {csn 3607  ccnv 4643  cima 4647  cfv 5235  (class class class)co 5897  0gc0g 12764  Grpcgrp 12960  NrmSGrpcnsg 13124   GrpHom cghm 13196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-submnd 12927  df-grp 12963  df-minusg 12964  df-sbg 12965  df-subg 13126  df-nsg 13127  df-ghm 13197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator