ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 GIF version

Theorem gsumval2 13099
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2196 . . 3 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . 3 + = (+g𝐺)
4 gsumval2.g . . 3 (𝜑𝐺𝑉)
5 gsumval2.n . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 9623 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
8 eluzelz 9627 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
95, 8syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
107, 9fzfigd 10540 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
11 gsumval2.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
121, 2, 3, 4, 10, 11igsumval 13092 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
13 simprr 531 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
14 simprl 529 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
15 eqcom 2198 . . . . . . . . . . . . . 14 ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (𝑚...𝑛))
16 fzopth 10153 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1715, 16bitr3id 194 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1817adantr 276 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1914, 18mpbid 147 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
2019simpld 112 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
2120seqeq1d 10562 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
2219simprd 114 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
2321, 22fveq12d 5568 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
2413, 23eqtrd 2229 . . . . . . 7 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2524rexlimiva 2609 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2625exlimiv 1612 . . . . 5 (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
277elexd 2776 . . . . . . . 8 (𝜑𝑀 ∈ V)
2827adantr 276 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ V)
295adantr 276 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑁 ∈ (ℤ𝑀))
30 oveq2 5933 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3130eqeq2d 2208 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
32 fveq2 5561 . . . . . . . . . . 11 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3332eqeq2d 2208 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3431, 33anbi12d 473 . . . . . . . . 9 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
3534adantl 277 . . . . . . . 8 (((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
36 eqidd 2197 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → (𝑀...𝑁) = (𝑀...𝑁))
37 simpr 110 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
3836, 37jca 306 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3929, 35, 38rspcedvd 2874 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
40 fveq2 5561 . . . . . . . 8 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
41 oveq1 5932 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4241eqeq2d 2208 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
43 seqeq1 10559 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
4443fveq1d 5563 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
4544eqeq2d 2208 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
4642, 45anbi12d 473 . . . . . . . 8 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4740, 46rexeqbidv 2710 . . . . . . 7 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4828, 39, 47spcedv 2853 . . . . . 6 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
4948ex 115 . . . . 5 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5026, 49impbid2 143 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
51 eluzfz2 10124 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
525, 51syl 14 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
53 n0i 3457 . . . . . . 7 (𝑁 ∈ (𝑀...𝑁) → ¬ (𝑀...𝑁) = ∅)
5452, 53syl 14 . . . . . 6 (𝜑 → ¬ (𝑀...𝑁) = ∅)
5554intnanrd 933 . . . . 5 (𝜑 → ¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)))
56 biorf 745 . . . . 5 (¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5755, 56syl 14 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5850, 57bitr3d 190 . . 3 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5958iotabidv 5242 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
60 eqid 2196 . . 3 (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)
61 seqex 10558 . . . . 5 seq𝑀( + , 𝐹) ∈ V
62 fvexg 5580 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
6361, 5, 62sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
64 eueq 2935 . . . . 5 ((seq𝑀( + , 𝐹)‘𝑁) ∈ V ↔ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
6563, 64sylib 122 . . . 4 (𝜑 → ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
66 eqeq1 2203 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)))
6766iota2 5249 . . . 4 (((seq𝑀( + , 𝐹)‘𝑁) ∈ V ∧ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6863, 65, 67syl2anc 411 . . 3 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6960, 68mpbii 148 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
7012, 59, 693eqtr2d 2235 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  ∃!weu 2045  wcel 2167  wrex 2476  Vcvv 2763  c0 3451  cio 5218  wf 5255  cfv 5259  (class class class)co 5925  Fincfn 6808  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  Basecbs 12703  +gcplusg 12780  0gc0g 12958   Σg cgsu 12959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-0g 12960  df-igsum 12961
This theorem is referenced by:  gsumsplit1r  13100  gsumprval  13101  gsumwsubmcl  13198  gsumwmhm  13200  mulgnngsum  13333  gsumfzconst  13547
  Copyright terms: Public domain W3C validator