ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 GIF version

Theorem gsumval2 13299
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2206 . . 3 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . 3 + = (+g𝐺)
4 gsumval2.g . . 3 (𝜑𝐺𝑉)
5 gsumval2.n . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 9668 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
8 eluzelz 9672 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
95, 8syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
107, 9fzfigd 10593 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
11 gsumval2.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
121, 2, 3, 4, 10, 11igsumval 13292 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
13 simprr 531 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
14 simprl 529 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
15 eqcom 2208 . . . . . . . . . . . . . 14 ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (𝑚...𝑛))
16 fzopth 10198 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1715, 16bitr3id 194 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1817adantr 276 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1914, 18mpbid 147 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
2019simpld 112 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
2120seqeq1d 10615 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
2219simprd 114 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
2321, 22fveq12d 5595 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
2413, 23eqtrd 2239 . . . . . . 7 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2524rexlimiva 2619 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2625exlimiv 1622 . . . . 5 (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
277elexd 2787 . . . . . . . 8 (𝜑𝑀 ∈ V)
2827adantr 276 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ V)
295adantr 276 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑁 ∈ (ℤ𝑀))
30 oveq2 5964 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3130eqeq2d 2218 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
32 fveq2 5588 . . . . . . . . . . 11 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3332eqeq2d 2218 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3431, 33anbi12d 473 . . . . . . . . 9 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
3534adantl 277 . . . . . . . 8 (((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
36 eqidd 2207 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → (𝑀...𝑁) = (𝑀...𝑁))
37 simpr 110 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
3836, 37jca 306 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3929, 35, 38rspcedvd 2887 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
40 fveq2 5588 . . . . . . . 8 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
41 oveq1 5963 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4241eqeq2d 2218 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
43 seqeq1 10612 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
4443fveq1d 5590 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
4544eqeq2d 2218 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
4642, 45anbi12d 473 . . . . . . . 8 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4740, 46rexeqbidv 2720 . . . . . . 7 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4828, 39, 47spcedv 2866 . . . . . 6 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
4948ex 115 . . . . 5 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5026, 49impbid2 143 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
51 eluzfz2 10169 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
525, 51syl 14 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
53 n0i 3470 . . . . . . 7 (𝑁 ∈ (𝑀...𝑁) → ¬ (𝑀...𝑁) = ∅)
5452, 53syl 14 . . . . . 6 (𝜑 → ¬ (𝑀...𝑁) = ∅)
5554intnanrd 934 . . . . 5 (𝜑 → ¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)))
56 biorf 746 . . . . 5 (¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5755, 56syl 14 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5850, 57bitr3d 190 . . 3 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5958iotabidv 5262 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
60 eqid 2206 . . 3 (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)
61 seqex 10611 . . . . 5 seq𝑀( + , 𝐹) ∈ V
62 fvexg 5607 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
6361, 5, 62sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
64 eueq 2948 . . . . 5 ((seq𝑀( + , 𝐹)‘𝑁) ∈ V ↔ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
6563, 64sylib 122 . . . 4 (𝜑 → ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
66 eqeq1 2213 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)))
6766iota2 5269 . . . 4 (((seq𝑀( + , 𝐹)‘𝑁) ∈ V ∧ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6863, 65, 67syl2anc 411 . . 3 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6960, 68mpbii 148 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
7012, 59, 693eqtr2d 2245 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wex 1516  ∃!weu 2055  wcel 2177  wrex 2486  Vcvv 2773  c0 3464  cio 5238  wf 5275  cfv 5279  (class class class)co 5956  Fincfn 6839  cz 9387  cuz 9663  ...cfz 10145  seqcseq 10609  Basecbs 12902  +gcplusg 12979  0gc0g 13158   Σg cgsu 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-seqfrec 10610  df-ndx 12905  df-slot 12906  df-base 12908  df-0g 13160  df-igsum 13161
This theorem is referenced by:  gsumsplit1r  13300  gsumprval  13301  gsumwsubmcl  13398  gsumwmhm  13400  mulgnngsum  13533  gsumfzconst  13747
  Copyright terms: Public domain W3C validator