| Step | Hyp | Ref
| Expression |
| 1 | | gsumval2.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | eqid 2196 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 3 | | gsumval2.p |
. . 3
⊢ + =
(+g‘𝐺) |
| 4 | | gsumval2.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 5 | | gsumval2.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | | eluzel2 9606 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 7 | 5, 6 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | | eluzelz 9610 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 9 | 5, 8 | syl 14 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 7, 9 | fzfigd 10523 |
. . 3
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 11 | | gsumval2.f |
. . 3
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 12 | 1, 2, 3, 4, 10, 11 | igsumval 13033 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 13 | | simprr 531 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) |
| 14 | | simprl 529 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛)) |
| 15 | | eqcom 2198 |
. . . . . . . . . . . . . 14
⊢ ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (𝑚...𝑛)) |
| 16 | | fzopth 10136 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁))) |
| 17 | 15, 16 | bitr3id 194 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁))) |
| 18 | 17 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀 ∧ 𝑛 = 𝑁))) |
| 19 | 14, 18 | mpbid 147 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀 ∧ 𝑛 = 𝑁)) |
| 20 | 19 | simpld 112 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀) |
| 21 | 20 | seqeq1d 10545 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 22 | 19 | simprd 114 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁) |
| 23 | 21, 22 | fveq12d 5565 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 24 | 13, 23 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 25 | 24 | rexlimiva 2609 |
. . . . . 6
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 26 | 25 | exlimiv 1612 |
. . . . 5
⊢
(∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 27 | 7 | elexd 2776 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ V) |
| 28 | 27 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ V) |
| 29 | 5 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 30 | | oveq2 5930 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁)) |
| 31 | 30 | eqeq2d 2208 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁))) |
| 32 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 33 | 32 | eqeq2d 2208 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) |
| 34 | 31, 33 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))) |
| 35 | 34 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))) |
| 36 | | eqidd 2197 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → (𝑀...𝑁) = (𝑀...𝑁)) |
| 37 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 38 | 36, 37 | jca 306 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) |
| 39 | 29, 35, 38 | rspcedvd 2874 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ≥‘𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))) |
| 40 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑀)) |
| 41 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛)) |
| 42 | 41 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛))) |
| 43 | | seqeq1 10542 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 44 | 43 | fveq1d 5560 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛)) |
| 45 | 44 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))) |
| 46 | 42, 45 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))) |
| 47 | 40, 46 | rexeqbidv 2710 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))) |
| 48 | 28, 39, 47 | spcedv 2853 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 49 | 48 | ex 115 |
. . . . 5
⊢ (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 50 | 26, 49 | impbid2 143 |
. . . 4
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))) |
| 51 | | eluzfz2 10107 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 52 | 5, 51 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 53 | | n0i 3456 |
. . . . . . 7
⊢ (𝑁 ∈ (𝑀...𝑁) → ¬ (𝑀...𝑁) = ∅) |
| 54 | 52, 53 | syl 14 |
. . . . . 6
⊢ (𝜑 → ¬ (𝑀...𝑁) = ∅) |
| 55 | 54 | intnanrd 933 |
. . . . 5
⊢ (𝜑 → ¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g‘𝐺))) |
| 56 | | biorf 745 |
. . . . 5
⊢ (¬
((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g‘𝐺)) → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 57 | 55, 56 | syl 14 |
. . . 4
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 58 | 50, 57 | bitr3d 190 |
. . 3
⊢ (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 59 | 58 | iotabidv 5241 |
. 2
⊢ (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 60 | | eqid 2196 |
. . 3
⊢ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) |
| 61 | | seqex 10541 |
. . . . 5
⊢ seq𝑀( + , 𝐹) ∈ V |
| 62 | | fvexg 5577 |
. . . . 5
⊢
((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈
(ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V) |
| 63 | 61, 5, 62 | sylancr 414 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V) |
| 64 | | eueq 2935 |
. . . . 5
⊢
((seq𝑀( + , 𝐹)‘𝑁) ∈ V ↔ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 65 | 63, 64 | sylib 122 |
. . . 4
⊢ (𝜑 → ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) |
| 66 | | eqeq1 2203 |
. . . . 5
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁))) |
| 67 | 66 | iota2 5248 |
. . . 4
⊢
(((seq𝑀( + , 𝐹)‘𝑁) ∈ V ∧ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))) |
| 68 | 63, 65, 67 | syl2anc 411 |
. . 3
⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))) |
| 69 | 60, 68 | mpbii 148 |
. 2
⊢ (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 70 | 12, 59, 69 | 3eqtr2d 2235 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) |