ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 GIF version

Theorem gsumval2 13416
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2229 . . 3 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . 3 + = (+g𝐺)
4 gsumval2.g . . 3 (𝜑𝐺𝑉)
5 gsumval2.n . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 9715 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
8 eluzelz 9719 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
95, 8syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
107, 9fzfigd 10640 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
11 gsumval2.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
121, 2, 3, 4, 10, 11igsumval 13409 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
13 simprr 531 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
14 simprl 529 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
15 eqcom 2231 . . . . . . . . . . . . . 14 ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (𝑚...𝑛))
16 fzopth 10245 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1715, 16bitr3id 194 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1817adantr 276 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1914, 18mpbid 147 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
2019simpld 112 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
2120seqeq1d 10662 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
2219simprd 114 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
2321, 22fveq12d 5630 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
2413, 23eqtrd 2262 . . . . . . 7 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2524rexlimiva 2643 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2625exlimiv 1644 . . . . 5 (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
277elexd 2813 . . . . . . . 8 (𝜑𝑀 ∈ V)
2827adantr 276 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ V)
295adantr 276 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑁 ∈ (ℤ𝑀))
30 oveq2 6002 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3130eqeq2d 2241 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
32 fveq2 5623 . . . . . . . . . . 11 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3332eqeq2d 2241 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3431, 33anbi12d 473 . . . . . . . . 9 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
3534adantl 277 . . . . . . . 8 (((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
36 eqidd 2230 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → (𝑀...𝑁) = (𝑀...𝑁))
37 simpr 110 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
3836, 37jca 306 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3929, 35, 38rspcedvd 2913 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
40 fveq2 5623 . . . . . . . 8 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
41 oveq1 6001 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4241eqeq2d 2241 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
43 seqeq1 10659 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
4443fveq1d 5625 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
4544eqeq2d 2241 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
4642, 45anbi12d 473 . . . . . . . 8 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4740, 46rexeqbidv 2745 . . . . . . 7 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4828, 39, 47spcedv 2892 . . . . . 6 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
4948ex 115 . . . . 5 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5026, 49impbid2 143 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
51 eluzfz2 10216 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
525, 51syl 14 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
53 n0i 3497 . . . . . . 7 (𝑁 ∈ (𝑀...𝑁) → ¬ (𝑀...𝑁) = ∅)
5452, 53syl 14 . . . . . 6 (𝜑 → ¬ (𝑀...𝑁) = ∅)
5554intnanrd 937 . . . . 5 (𝜑 → ¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)))
56 biorf 749 . . . . 5 (¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5755, 56syl 14 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5850, 57bitr3d 190 . . 3 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5958iotabidv 5297 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
60 eqid 2229 . . 3 (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)
61 seqex 10658 . . . . 5 seq𝑀( + , 𝐹) ∈ V
62 fvexg 5642 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
6361, 5, 62sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
64 eueq 2974 . . . . 5 ((seq𝑀( + , 𝐹)‘𝑁) ∈ V ↔ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
6563, 64sylib 122 . . . 4 (𝜑 → ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
66 eqeq1 2236 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)))
6766iota2 5304 . . . 4 (((seq𝑀( + , 𝐹)‘𝑁) ∈ V ∧ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6863, 65, 67syl2anc 411 . . 3 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6960, 68mpbii 148 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
7012, 59, 693eqtr2d 2268 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  wrex 2509  Vcvv 2799  c0 3491  cio 5272  wf 5310  cfv 5314  (class class class)co 5994  Fincfn 6877  cz 9434  cuz 9710  ...cfz 10192  seqcseq 10656  Basecbs 13018  +gcplusg 13096  0gc0g 13275   Σg cgsu 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-seqfrec 10657  df-ndx 13021  df-slot 13022  df-base 13024  df-0g 13277  df-igsum 13278
This theorem is referenced by:  gsumsplit1r  13417  gsumprval  13418  gsumwsubmcl  13515  gsumwmhm  13517  mulgnngsum  13650  gsumfzconst  13864
  Copyright terms: Public domain W3C validator