ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumval2 GIF version

Theorem gsumval2 13438
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2229 . . 3 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . 3 + = (+g𝐺)
4 gsumval2.g . . 3 (𝜑𝐺𝑉)
5 gsumval2.n . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 9735 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
8 eluzelz 9739 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
95, 8syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
107, 9fzfigd 10661 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
11 gsumval2.f . . 3 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
121, 2, 3, 4, 10, 11igsumval 13431 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
13 simprr 531 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
14 simprl 529 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑀...𝑁) = (𝑚...𝑛))
15 eqcom 2231 . . . . . . . . . . . . . 14 ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑀...𝑁) = (𝑚...𝑛))
16 fzopth 10265 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑚) → ((𝑚...𝑛) = (𝑀...𝑁) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1715, 16bitr3id 194 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1817adantr 276 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑚 = 𝑀𝑛 = 𝑁)))
1914, 18mpbid 147 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 = 𝑀𝑛 = 𝑁))
2019simpld 112 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑚 = 𝑀)
2120seqeq1d 10683 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
2219simprd 114 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑛 = 𝑁)
2321, 22fveq12d 5636 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
2413, 23eqtrd 2262 . . . . . . 7 ((𝑛 ∈ (ℤ𝑚) ∧ ((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2524rexlimiva 2643 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
2625exlimiv 1644 . . . . 5 (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
277elexd 2813 . . . . . . . 8 (𝜑𝑀 ∈ V)
2827adantr 276 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ V)
295adantr 276 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑁 ∈ (ℤ𝑀))
30 oveq2 6015 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
3130eqeq2d 2241 . . . . . . . . . 10 (𝑛 = 𝑁 → ((𝑀...𝑁) = (𝑀...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑁)))
32 fveq2 5629 . . . . . . . . . . 11 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
3332eqeq2d 2241 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3431, 33anbi12d 473 . . . . . . . . 9 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
3534adantl 277 . . . . . . . 8 (((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) ∧ 𝑛 = 𝑁) → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))))
36 eqidd 2230 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → (𝑀...𝑁) = (𝑀...𝑁))
37 simpr 110 . . . . . . . . 9 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
3836, 37jca 306 . . . . . . . 8 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((𝑀...𝑁) = (𝑀...𝑁) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
3929, 35, 38rspcedvd 2913 . . . . . . 7 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
40 fveq2 5629 . . . . . . . 8 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
41 oveq1 6014 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
4241eqeq2d 2241 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
43 seqeq1 10680 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
4443fveq1d 5631 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
4544eqeq2d 2241 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛)))
4642, 45anbi12d 473 . . . . . . . 8 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4740, 46rexeqbidv 2745 . . . . . . 7 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑥 = (seq𝑀( + , 𝐹)‘𝑛))))
4828, 39, 47spcedv 2892 . . . . . 6 ((𝜑𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
4948ex 115 . . . . 5 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5026, 49impbid2 143 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)))
51 eluzfz2 10236 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
525, 51syl 14 . . . . . . 7 (𝜑𝑁 ∈ (𝑀...𝑁))
53 n0i 3497 . . . . . . 7 (𝑁 ∈ (𝑀...𝑁) → ¬ (𝑀...𝑁) = ∅)
5452, 53syl 14 . . . . . 6 (𝜑 → ¬ (𝑀...𝑁) = ∅)
5554intnanrd 937 . . . . 5 (𝜑 → ¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)))
56 biorf 749 . . . . 5 (¬ ((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5755, 56syl 14 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5850, 57bitr3d 190 . . 3 (𝜑 → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
5958iotabidv 5301 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (℩𝑥(((𝑀...𝑁) = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
60 eqid 2229 . . 3 (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)
61 seqex 10679 . . . . 5 seq𝑀( + , 𝐹) ∈ V
62 fvexg 5648 . . . . 5 ((seq𝑀( + , 𝐹) ∈ V ∧ 𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
6361, 5, 62sylancr 414 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ V)
64 eueq 2974 . . . . 5 ((seq𝑀( + , 𝐹)‘𝑁) ∈ V ↔ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
6563, 64sylib 122 . . . 4 (𝜑 → ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁))
66 eqeq1 2236 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑥 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁)))
6766iota2 5308 . . . 4 (((seq𝑀( + , 𝐹)‘𝑁) ∈ V ∧ ∃!𝑥 𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6863, 65, 67syl2anc 411 . . 3 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑁) ↔ (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)))
6960, 68mpbii 148 . 2 (𝜑 → (℩𝑥𝑥 = (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
7012, 59, 693eqtr2d 2268 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  wrex 2509  Vcvv 2799  c0 3491  cio 5276  wf 5314  cfv 5318  (class class class)co 6007  Fincfn 6895  cz 9454  cuz 9730  ...cfz 10212  seqcseq 10677  Basecbs 13040  +gcplusg 13118  0gc0g 13297   Σg cgsu 13298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-0g 13299  df-igsum 13300
This theorem is referenced by:  gsumsplit1r  13439  gsumprval  13440  gsumwsubmcl  13537  gsumwmhm  13539  mulgnngsum  13672  gsumfzconst  13886
  Copyright terms: Public domain W3C validator