| Step | Hyp | Ref
 | Expression | 
| 1 |   | gsumress.g | 
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ 𝑉) | 
| 2 |   | gsumress.b | 
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐺) | 
| 3 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 4 |   | gsumress.o | 
. . . . . . . . . . 11
⊢  + =
(+g‘𝐺) | 
| 5 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} | 
| 6 | 2, 3, 4, 5 | mgmidsssn0 13027 | 
. . . . . . . . . 10
⊢ (𝐺 ∈ 𝑉 → {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g‘𝐺)}) | 
| 7 | 1, 6 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g‘𝐺)}) | 
| 8 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥)) | 
| 9 | 8 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥)) | 
| 10 | 9 | ovanraleqv 5946 | 
. . . . . . . . . 10
⊢ (𝑦 = 0 → (∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) | 
| 11 |   | gsumress.s | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ 𝐵) | 
| 12 |   | gsumress.z | 
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈ 𝑆) | 
| 13 | 11, 12 | sseldd 3184 | 
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ 𝐵) | 
| 14 |   | gsumress.c | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) | 
| 15 | 14 | ralrimiva 2570 | 
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) | 
| 16 | 10, 13, 15 | elrabd 2922 | 
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}) | 
| 17 | 7, 16 | sseldd 3184 | 
. . . . . . . 8
⊢ (𝜑 → 0 ∈
{(0g‘𝐺)}) | 
| 18 |   | elsni 3640 | 
. . . . . . . 8
⊢ ( 0 ∈
{(0g‘𝐺)}
→ 0
= (0g‘𝐺)) | 
| 19 | 17, 18 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 0 =
(0g‘𝐺)) | 
| 20 |   | gsumress.h | 
. . . . . . . . . . . . 13
⊢ 𝐻 = (𝐺 ↾s 𝑆) | 
| 21 | 20 | a1i 9 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) | 
| 22 | 2 | a1i 9 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | 
| 23 | 21, 22, 1, 11 | ressbas2d 12746 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 = (Base‘𝐻)) | 
| 24 | 23, 12 | basmexd 12738 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ V) | 
| 25 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(Base‘𝐻) =
(Base‘𝐻) | 
| 26 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(0g‘𝐻) = (0g‘𝐻) | 
| 27 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(+g‘𝐻) = (+g‘𝐻) | 
| 28 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} | 
| 29 | 25, 26, 27, 28 | mgmidsssn0 13027 | 
. . . . . . . . . 10
⊢ (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} ⊆ {(0g‘𝐻)}) | 
| 30 | 24, 29 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} ⊆ {(0g‘𝐻)}) | 
| 31 | 9 | ovanraleqv 5946 | 
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) | 
| 32 | 11 | sselda 3183 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) | 
| 33 | 32, 14 | syldan 282 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) | 
| 34 | 33 | ralrimiva 2570 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) | 
| 35 | 31, 12, 34 | elrabd 2922 | 
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ {𝑦 ∈ 𝑆 ∣ ∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}) | 
| 36 | 4 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → + =
(+g‘𝐺)) | 
| 37 |   | basfn 12736 | 
. . . . . . . . . . . . . . . . . 18
⊢ Base Fn
V | 
| 38 |   | funfvex 5575 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
Base ∧ 𝐻 ∈ dom
Base) → (Base‘𝐻)
∈ V) | 
| 39 | 38 | funfni 5358 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((Base Fn
V ∧ 𝐻 ∈ V) →
(Base‘𝐻) ∈
V) | 
| 40 | 37, 24, 39 | sylancr 414 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Base‘𝐻) ∈ V) | 
| 41 | 23, 40 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ∈ V) | 
| 42 | 21, 36, 41, 1 | ressplusgd 12806 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → + =
(+g‘𝐻)) | 
| 43 | 42 | oveqd 5939 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐻)𝑥)) | 
| 44 | 43 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g‘𝐻)𝑥) = 𝑥)) | 
| 45 | 42 | oveqd 5939 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐻)𝑦)) | 
| 46 | 45 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g‘𝐻)𝑦) = 𝑥)) | 
| 47 | 44, 46 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥))) | 
| 48 | 23, 47 | raleqbidv 2709 | 
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥))) | 
| 49 | 23, 48 | rabeqbidv 2758 | 
. . . . . . . . . 10
⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ ∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)}) | 
| 50 | 35, 49 | eleqtrd 2275 | 
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)}) | 
| 51 | 30, 50 | sseldd 3184 | 
. . . . . . . 8
⊢ (𝜑 → 0 ∈
{(0g‘𝐻)}) | 
| 52 |   | elsni 3640 | 
. . . . . . . 8
⊢ ( 0 ∈
{(0g‘𝐻)}
→ 0
= (0g‘𝐻)) | 
| 53 | 51, 52 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → 0 =
(0g‘𝐻)) | 
| 54 | 19, 53 | eqtr3d 2231 | 
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) | 
| 55 | 54 | eqeq2d 2208 | 
. . . . 5
⊢ (𝜑 → (𝑧 = (0g‘𝐺) ↔ 𝑧 = (0g‘𝐻))) | 
| 56 | 55 | anbi2d 464 | 
. . . 4
⊢ (𝜑 → ((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ↔ (𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)))) | 
| 57 | 42 | seqeq2d 10546 | 
. . . . . . . . 9
⊢ (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g‘𝐻), 𝐹)) | 
| 58 | 57 | fveq1d 5560 | 
. . . . . . . 8
⊢ (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) | 
| 59 | 58 | eqeq2d 2208 | 
. . . . . . 7
⊢ (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) | 
| 60 | 59 | anbi2d 464 | 
. . . . . 6
⊢ (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) | 
| 61 | 60 | rexbidv 2498 | 
. . . . 5
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) | 
| 62 | 61 | exbidv 1839 | 
. . . 4
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) | 
| 63 | 56, 62 | orbi12d 794 | 
. . 3
⊢ (𝜑 → (((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ ((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) | 
| 64 | 63 | iotabidv 5241 | 
. 2
⊢ (𝜑 → (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) | 
| 65 |   | gsumress.a | 
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑋) | 
| 66 |   | gsumress.f | 
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | 
| 67 | 66, 11 | fssd 5420 | 
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 68 | 2, 3, 4, 1, 65, 67 | igsumval 13033 | 
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))) | 
| 69 | 23 | feq3d 5396 | 
. . . 4
⊢ (𝜑 → (𝐹:𝐴⟶𝑆 ↔ 𝐹:𝐴⟶(Base‘𝐻))) | 
| 70 | 66, 69 | mpbid 147 | 
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐻)) | 
| 71 | 25, 26, 27, 24, 65, 70 | igsumval 13033 | 
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) | 
| 72 | 64, 68, 71 | 3eqtr4d 2239 | 
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |