ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumress GIF version

Theorem gsumress 13423
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b 𝐵 = (Base‘𝐺)
gsumress.o + = (+g𝐺)
gsumress.h 𝐻 = (𝐺s 𝑆)
gsumress.g (𝜑𝐺𝑉)
gsumress.a (𝜑𝐴𝑋)
gsumress.s (𝜑𝑆𝐵)
gsumress.f (𝜑𝐹:𝐴𝑆)
gsumress.z (𝜑0𝑆)
gsumress.c ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
Assertion
Ref Expression
gsumress (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝐻   𝑥, +   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem gsumress
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.g . . . . . . . . . 10 (𝜑𝐺𝑉)
2 gsumress.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
3 eqid 2229 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
4 gsumress.o . . . . . . . . . . 11 + = (+g𝐺)
5 eqid 2229 . . . . . . . . . . 11 {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}
62, 3, 4, 5mgmidsssn0 13412 . . . . . . . . . 10 (𝐺𝑉 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
71, 6syl 14 . . . . . . . . 9 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
8 oveq1 6007 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥))
98eqeq1d 2238 . . . . . . . . . . 11 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥))
109ovanraleqv 6024 . . . . . . . . . 10 (𝑦 = 0 → (∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
11 gsumress.s . . . . . . . . . . 11 (𝜑𝑆𝐵)
12 gsumress.z . . . . . . . . . . 11 (𝜑0𝑆)
1311, 12sseldd 3225 . . . . . . . . . 10 (𝜑0𝐵)
14 gsumress.c . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
1514ralrimiva 2603 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
1610, 13, 15elrabd 2961 . . . . . . . . 9 (𝜑0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
177, 16sseldd 3225 . . . . . . . 8 (𝜑0 ∈ {(0g𝐺)})
18 elsni 3684 . . . . . . . 8 ( 0 ∈ {(0g𝐺)} → 0 = (0g𝐺))
1917, 18syl 14 . . . . . . 7 (𝜑0 = (0g𝐺))
20 gsumress.h . . . . . . . . . . . . 13 𝐻 = (𝐺s 𝑆)
2120a1i 9 . . . . . . . . . . . 12 (𝜑𝐻 = (𝐺s 𝑆))
222a1i 9 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝐺))
2321, 22, 1, 11ressbas2d 13096 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘𝐻))
2423, 12basmexd 13088 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
25 eqid 2229 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
26 eqid 2229 . . . . . . . . . . 11 (0g𝐻) = (0g𝐻)
27 eqid 2229 . . . . . . . . . . 11 (+g𝐻) = (+g𝐻)
28 eqid 2229 . . . . . . . . . . 11 {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}
2925, 26, 27, 28mgmidsssn0 13412 . . . . . . . . . 10 (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
3024, 29syl 14 . . . . . . . . 9 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
319ovanraleqv 6024 . . . . . . . . . . 11 (𝑦 = 0 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
3211sselda 3224 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑥𝐵)
3332, 14syldan 282 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3433ralrimiva 2603 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3531, 12, 34elrabd 2961 . . . . . . . . . 10 (𝜑0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
364a1i 9 . . . . . . . . . . . . . . . 16 (𝜑+ = (+g𝐺))
37 basfn 13086 . . . . . . . . . . . . . . . . . 18 Base Fn V
38 funfvex 5643 . . . . . . . . . . . . . . . . . . 19 ((Fun Base ∧ 𝐻 ∈ dom Base) → (Base‘𝐻) ∈ V)
3938funfni 5422 . . . . . . . . . . . . . . . . . 18 ((Base Fn V ∧ 𝐻 ∈ V) → (Base‘𝐻) ∈ V)
4037, 24, 39sylancr 414 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐻) ∈ V)
4123, 40eqeltrd 2306 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ V)
4221, 36, 41, 1ressplusgd 13157 . . . . . . . . . . . . . . 15 (𝜑+ = (+g𝐻))
4342oveqd 6017 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐻)𝑥))
4443eqeq1d 2238 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g𝐻)𝑥) = 𝑥))
4542oveqd 6017 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
4645eqeq1d 2238 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g𝐻)𝑦) = 𝑥))
4744, 46anbi12d 473 . . . . . . . . . . . 12 (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4823, 47raleqbidv 2744 . . . . . . . . . . 11 (𝜑 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4923, 48rabeqbidv 2794 . . . . . . . . . 10 (𝜑 → {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
5035, 49eleqtrd 2308 . . . . . . . . 9 (𝜑0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
5130, 50sseldd 3225 . . . . . . . 8 (𝜑0 ∈ {(0g𝐻)})
52 elsni 3684 . . . . . . . 8 ( 0 ∈ {(0g𝐻)} → 0 = (0g𝐻))
5351, 52syl 14 . . . . . . 7 (𝜑0 = (0g𝐻))
5419, 53eqtr3d 2264 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
5554eqeq2d 2241 . . . . 5 (𝜑 → (𝑧 = (0g𝐺) ↔ 𝑧 = (0g𝐻)))
5655anbi2d 464 . . . 4 (𝜑 → ((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ↔ (𝐴 = ∅ ∧ 𝑧 = (0g𝐻))))
5742seqeq2d 10671 . . . . . . . . 9 (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g𝐻), 𝐹))
5857fveq1d 5628 . . . . . . . 8 (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
5958eqeq2d 2241 . . . . . . 7 (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
6059anbi2d 464 . . . . . 6 (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6160rexbidv 2531 . . . . 5 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6261exbidv 1871 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6356, 62orbi12d 798 . . 3 (𝜑 → (((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ ((𝐴 = ∅ ∧ 𝑧 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
6463iotabidv 5300 . 2 (𝜑 → (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
65 gsumress.a . . 3 (𝜑𝐴𝑋)
66 gsumress.f . . . 4 (𝜑𝐹:𝐴𝑆)
6766, 11fssd 5485 . . 3 (𝜑𝐹:𝐴𝐵)
682, 3, 4, 1, 65, 67igsumval 13418 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))))
6923feq3d 5461 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
7066, 69mpbid 147 . . 3 (𝜑𝐹:𝐴⟶(Base‘𝐻))
7125, 26, 27, 24, 65, 70igsumval 13418 . 2 (𝜑 → (𝐻 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
7264, 68, 713eqtr4d 2272 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  wss 3197  c0 3491  {csn 3666  cio 5275   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  cuz 9718  ...cfz 10200  seqcseq 10664  Basecbs 13027  s cress 13028  +gcplusg 13105  0gc0g 13284   Σg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-neg 8316  df-inn 9107  df-2 9165  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-igsum 13287
This theorem is referenced by:  gsumsubm  13522
  Copyright terms: Public domain W3C validator