| Step | Hyp | Ref
| Expression |
| 1 | | gsumress.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 2 | | gsumress.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐺) |
| 3 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 4 | | gsumress.o |
. . . . . . . . . . 11
⊢ + =
(+g‘𝐺) |
| 5 | | eqid 2196 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} |
| 6 | 2, 3, 4, 5 | mgmidsssn0 13086 |
. . . . . . . . . 10
⊢ (𝐺 ∈ 𝑉 → {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g‘𝐺)}) |
| 7 | 1, 6 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g‘𝐺)}) |
| 8 | | oveq1 5932 |
. . . . . . . . . . . 12
⊢ (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥)) |
| 9 | 8 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥)) |
| 10 | 9 | ovanraleqv 5949 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |
| 11 | | gsumress.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 12 | | gsumress.z |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈ 𝑆) |
| 13 | 11, 12 | sseldd 3185 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ 𝐵) |
| 14 | | gsumress.c |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 15 | 14 | ralrimiva 2570 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 16 | 10, 13, 15 | elrabd 2922 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}) |
| 17 | 7, 16 | sseldd 3185 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
{(0g‘𝐺)}) |
| 18 | | elsni 3641 |
. . . . . . . 8
⊢ ( 0 ∈
{(0g‘𝐺)}
→ 0
= (0g‘𝐺)) |
| 19 | 17, 18 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 0 =
(0g‘𝐺)) |
| 20 | | gsumress.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| 21 | 20 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝑆)) |
| 22 | 2 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| 23 | 21, 22, 1, 11 | ressbas2d 12771 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 = (Base‘𝐻)) |
| 24 | 23, 12 | basmexd 12763 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ V) |
| 25 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 26 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 27 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 28 | | eqid 2196 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} |
| 29 | 25, 26, 27, 28 | mgmidsssn0 13086 |
. . . . . . . . . 10
⊢ (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} ⊆ {(0g‘𝐻)}) |
| 30 | 24, 29 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)} ⊆ {(0g‘𝐻)}) |
| 31 | 9 | ovanraleqv 5949 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ 𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |
| 32 | 11 | sselda 3184 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 33 | 32, 14 | syldan 282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 34 | 33 | ralrimiva 2570 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 35 | 31, 12, 34 | elrabd 2922 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ {𝑦 ∈ 𝑆 ∣ ∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}) |
| 36 | 4 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → + =
(+g‘𝐺)) |
| 37 | | basfn 12761 |
. . . . . . . . . . . . . . . . . 18
⊢ Base Fn
V |
| 38 | | funfvex 5578 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
Base ∧ 𝐻 ∈ dom
Base) → (Base‘𝐻)
∈ V) |
| 39 | 38 | funfni 5361 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Base Fn
V ∧ 𝐻 ∈ V) →
(Base‘𝐻) ∈
V) |
| 40 | 37, 24, 39 | sylancr 414 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Base‘𝐻) ∈ V) |
| 41 | 23, 40 | eqeltrd 2273 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ∈ V) |
| 42 | 21, 36, 41, 1 | ressplusgd 12831 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → + =
(+g‘𝐻)) |
| 43 | 42 | oveqd 5942 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐻)𝑥)) |
| 44 | 43 | eqeq1d 2205 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g‘𝐻)𝑥) = 𝑥)) |
| 45 | 42 | oveqd 5942 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 46 | 45 | eqeq1d 2205 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g‘𝐻)𝑦) = 𝑥)) |
| 47 | 44, 46 | anbi12d 473 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥))) |
| 48 | 23, 47 | raleqbidv 2709 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥))) |
| 49 | 23, 48 | rabeqbidv 2758 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ ∀𝑥 ∈ 𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)}) |
| 50 | 35, 49 | eleqtrd 2275 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g‘𝐻)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐻)𝑦) = 𝑥)}) |
| 51 | 30, 50 | sseldd 3185 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
{(0g‘𝐻)}) |
| 52 | | elsni 3641 |
. . . . . . . 8
⊢ ( 0 ∈
{(0g‘𝐻)}
→ 0
= (0g‘𝐻)) |
| 53 | 51, 52 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 0 =
(0g‘𝐻)) |
| 54 | 19, 53 | eqtr3d 2231 |
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
| 55 | 54 | eqeq2d 2208 |
. . . . 5
⊢ (𝜑 → (𝑧 = (0g‘𝐺) ↔ 𝑧 = (0g‘𝐻))) |
| 56 | 55 | anbi2d 464 |
. . . 4
⊢ (𝜑 → ((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ↔ (𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)))) |
| 57 | 42 | seqeq2d 10563 |
. . . . . . . . 9
⊢ (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g‘𝐻), 𝐹)) |
| 58 | 57 | fveq1d 5563 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) |
| 59 | 58 | eqeq2d 2208 |
. . . . . . 7
⊢ (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
| 60 | 59 | anbi2d 464 |
. . . . . 6
⊢ (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 61 | 60 | rexbidv 2498 |
. . . . 5
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 62 | 61 | exbidv 1839 |
. . . 4
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 63 | 56, 62 | orbi12d 794 |
. . 3
⊢ (𝜑 → (((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ ((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
| 64 | 63 | iotabidv 5242 |
. 2
⊢ (𝜑 → (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
| 65 | | gsumress.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 66 | | gsumress.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| 67 | 66, 11 | fssd 5423 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 68 | 2, 3, 4, 1, 65, 67 | igsumval 13092 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 69 | 23 | feq3d 5399 |
. . . 4
⊢ (𝜑 → (𝐹:𝐴⟶𝑆 ↔ 𝐹:𝐴⟶(Base‘𝐻))) |
| 70 | 66, 69 | mpbid 147 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝐻)) |
| 71 | 25, 26, 27, 24, 65, 70 | igsumval 13092 |
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
| 72 | 64, 68, 71 | 3eqtr4d 2239 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |