ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumress GIF version

Theorem gsumress 12978
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
gsumress.b 𝐵 = (Base‘𝐺)
gsumress.o + = (+g𝐺)
gsumress.h 𝐻 = (𝐺s 𝑆)
gsumress.g (𝜑𝐺𝑉)
gsumress.a (𝜑𝐴𝑋)
gsumress.s (𝜑𝑆𝐵)
gsumress.f (𝜑𝐹:𝐴𝑆)
gsumress.z (𝜑0𝑆)
gsumress.c ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
Assertion
Ref Expression
gsumress (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝐻   𝑥, +   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem gsumress
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumress.g . . . . . . . . . 10 (𝜑𝐺𝑉)
2 gsumress.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
3 eqid 2193 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
4 gsumress.o . . . . . . . . . . 11 + = (+g𝐺)
5 eqid 2193 . . . . . . . . . . 11 {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)}
62, 3, 4, 5mgmidsssn0 12967 . . . . . . . . . 10 (𝐺𝑉 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
71, 6syl 14 . . . . . . . . 9 (𝜑 → {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} ⊆ {(0g𝐺)})
8 oveq1 5925 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 𝑥) = ( 0 + 𝑥))
98eqeq1d 2202 . . . . . . . . . . 11 (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ ( 0 + 𝑥) = 𝑥))
109ovanraleqv 5942 . . . . . . . . . 10 (𝑦 = 0 → (∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
11 gsumress.s . . . . . . . . . . 11 (𝜑𝑆𝐵)
12 gsumress.z . . . . . . . . . . 11 (𝜑0𝑆)
1311, 12sseldd 3180 . . . . . . . . . 10 (𝜑0𝐵)
14 gsumress.c . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
1514ralrimiva 2567 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
1610, 13, 15elrabd 2918 . . . . . . . . 9 (𝜑0 ∈ {𝑦𝐵 ∣ ∀𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
177, 16sseldd 3180 . . . . . . . 8 (𝜑0 ∈ {(0g𝐺)})
18 elsni 3636 . . . . . . . 8 ( 0 ∈ {(0g𝐺)} → 0 = (0g𝐺))
1917, 18syl 14 . . . . . . 7 (𝜑0 = (0g𝐺))
20 gsumress.h . . . . . . . . . . . . 13 𝐻 = (𝐺s 𝑆)
2120a1i 9 . . . . . . . . . . . 12 (𝜑𝐻 = (𝐺s 𝑆))
222a1i 9 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘𝐺))
2321, 22, 1, 11ressbas2d 12686 . . . . . . . . . . 11 (𝜑𝑆 = (Base‘𝐻))
2423, 12basmexd 12678 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
25 eqid 2193 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
26 eqid 2193 . . . . . . . . . . 11 (0g𝐻) = (0g𝐻)
27 eqid 2193 . . . . . . . . . . 11 (+g𝐻) = (+g𝐻)
28 eqid 2193 . . . . . . . . . . 11 {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)}
2925, 26, 27, 28mgmidsssn0 12967 . . . . . . . . . 10 (𝐻 ∈ V → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
3024, 29syl 14 . . . . . . . . 9 (𝜑 → {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)} ⊆ {(0g𝐻)})
319ovanraleqv 5942 . . . . . . . . . . 11 (𝑦 = 0 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
3211sselda 3179 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑥𝐵)
3332, 14syldan 282 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3433ralrimiva 2567 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑆 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
3531, 12, 34elrabd 2918 . . . . . . . . . 10 (𝜑0 ∈ {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)})
364a1i 9 . . . . . . . . . . . . . . . 16 (𝜑+ = (+g𝐺))
37 basfn 12676 . . . . . . . . . . . . . . . . . 18 Base Fn V
38 funfvex 5571 . . . . . . . . . . . . . . . . . . 19 ((Fun Base ∧ 𝐻 ∈ dom Base) → (Base‘𝐻) ∈ V)
3938funfni 5354 . . . . . . . . . . . . . . . . . 18 ((Base Fn V ∧ 𝐻 ∈ V) → (Base‘𝐻) ∈ V)
4037, 24, 39sylancr 414 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐻) ∈ V)
4123, 40eqeltrd 2270 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ V)
4221, 36, 41, 1ressplusgd 12746 . . . . . . . . . . . . . . 15 (𝜑+ = (+g𝐻))
4342oveqd 5935 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐻)𝑥))
4443eqeq1d 2202 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 + 𝑥) = 𝑥 ↔ (𝑦(+g𝐻)𝑥) = 𝑥))
4542oveqd 5935 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
4645eqeq1d 2202 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) = 𝑥 ↔ (𝑥(+g𝐻)𝑦) = 𝑥))
4744, 46anbi12d 473 . . . . . . . . . . . 12 (𝜑 → (((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4823, 47raleqbidv 2706 . . . . . . . . . . 11 (𝜑 → (∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)))
4923, 48rabeqbidv 2755 . . . . . . . . . 10 (𝜑 → {𝑦𝑆 ∣ ∀𝑥𝑆 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)} = {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
5035, 49eleqtrd 2272 . . . . . . . . 9 (𝜑0 ∈ {𝑦 ∈ (Base‘𝐻) ∣ ∀𝑥 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑥) = 𝑥 ∧ (𝑥(+g𝐻)𝑦) = 𝑥)})
5130, 50sseldd 3180 . . . . . . . 8 (𝜑0 ∈ {(0g𝐻)})
52 elsni 3636 . . . . . . . 8 ( 0 ∈ {(0g𝐻)} → 0 = (0g𝐻))
5351, 52syl 14 . . . . . . 7 (𝜑0 = (0g𝐻))
5419, 53eqtr3d 2228 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
5554eqeq2d 2205 . . . . 5 (𝜑 → (𝑧 = (0g𝐺) ↔ 𝑧 = (0g𝐻)))
5655anbi2d 464 . . . 4 (𝜑 → ((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ↔ (𝐴 = ∅ ∧ 𝑧 = (0g𝐻))))
5742seqeq2d 10525 . . . . . . . . 9 (𝜑 → seq𝑚( + , 𝐹) = seq𝑚((+g𝐻), 𝐹))
5857fveq1d 5556 . . . . . . . 8 (𝜑 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
5958eqeq2d 2205 . . . . . . 7 (𝜑 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
6059anbi2d 464 . . . . . 6 (𝜑 → ((𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6160rexbidv 2495 . . . . 5 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6261exbidv 1836 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
6356, 62orbi12d 794 . . 3 (𝜑 → (((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ ((𝐴 = ∅ ∧ 𝑧 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
6463iotabidv 5237 . 2 (𝜑 → (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
65 gsumress.a . . 3 (𝜑𝐴𝑋)
66 gsumress.f . . . 4 (𝜑𝐹:𝐴𝑆)
6766, 11fssd 5416 . . 3 (𝜑𝐹:𝐴𝐵)
682, 3, 4, 1, 65, 67igsumval 12973 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))))
6923feq3d 5392 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
7066, 69mpbid 147 . . 3 (𝜑𝐹:𝐴⟶(Base‘𝐻))
7125, 26, 27, 24, 65, 70igsumval 12973 . 2 (𝜑 → (𝐻 Σg 𝐹) = (℩𝑧((𝐴 = ∅ ∧ 𝑧 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
7264, 68, 713eqtr4d 2236 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  wss 3153  c0 3446  {csn 3618  cio 5213   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  cuz 9592  ...cfz 10074  seqcseq 10518  Basecbs 12618  s cress 12619  +gcplusg 12695  0gc0g 12867   Σg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-neg 8193  df-inn 8983  df-2 9041  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-igsum 12870
This theorem is referenced by:  gsumsubm  13066
  Copyright terms: Public domain W3C validator