| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvreq1 | GIF version | ||
| Description: Equality in terms of ratio equal to ring unity. (diveqap1 8840 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dvreq1.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvreq1.o | ⊢ 𝑈 = (Unit‘𝑅) |
| dvreq1.d | ⊢ / = (/r‘𝑅) |
| dvreq1.t | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| dvreq1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6001 | . . 3 ⊢ ((𝑋 / 𝑌) = 1 → ((𝑋 / 𝑌)(.r‘𝑅)𝑌) = ( 1 (.r‘𝑅)𝑌)) | |
| 2 | dvreq1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | dvreq1.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 4 | dvreq1.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 5 | eqid 2229 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | 2, 3, 4, 5 | dvrcan1 14089 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌)(.r‘𝑅)𝑌) = 𝑋) |
| 7 | 2 | a1i 9 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝐵 = (Base‘𝑅)) |
| 8 | 3 | a1i 9 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 9 | ringsrg 13996 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 10 | 9 | adantr 276 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 11 | simpr 110 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 12 | 7, 8, 10, 11 | unitcld 14057 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
| 13 | dvreq1.t | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 14 | 2, 5, 13 | ringlidm 13972 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 15 | 12, 14 | syldan 282 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 16 | 15 | 3adant2 1040 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 17 | 6, 16 | eqeq12d 2244 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((𝑋 / 𝑌)(.r‘𝑅)𝑌) = ( 1 (.r‘𝑅)𝑌) ↔ 𝑋 = 𝑌)) |
| 18 | 1, 17 | imbitrid 154 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 → 𝑋 = 𝑌)) |
| 19 | 3, 4, 13 | dvrid 14086 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = 1 ) |
| 20 | 19 | 3adant2 1040 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = 1 ) |
| 21 | oveq1 6001 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋 / 𝑌) = (𝑌 / 𝑌)) | |
| 22 | 21 | eqeq1d 2238 | . . 3 ⊢ (𝑋 = 𝑌 → ((𝑋 / 𝑌) = 1 ↔ (𝑌 / 𝑌) = 1 )) |
| 23 | 20, 22 | syl5ibrcom 157 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 = 𝑌 → (𝑋 / 𝑌) = 1 )) |
| 24 | 18, 23 | impbid 129 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 .rcmulr 13097 1rcur 13908 SRingcsrg 13912 Ringcrg 13945 Unitcui 14036 /rcdvr 14080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-tpos 6381 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-cmn 13809 df-abl 13810 df-mgp 13870 df-ur 13909 df-srg 13913 df-ring 13947 df-oppr 14017 df-dvdsr 14038 df-unit 14039 df-invr 14070 df-dvr 14081 |
| This theorem is referenced by: lringuplu 14145 |
| Copyright terms: Public domain | W3C validator |