| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvreq1 | GIF version | ||
| Description: Equality in terms of ratio equal to ring unity. (diveqap1 8791 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.) |
| Ref | Expression |
|---|---|
| dvreq1.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvreq1.o | ⊢ 𝑈 = (Unit‘𝑅) |
| dvreq1.d | ⊢ / = (/r‘𝑅) |
| dvreq1.t | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| dvreq1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5961 | . . 3 ⊢ ((𝑋 / 𝑌) = 1 → ((𝑋 / 𝑌)(.r‘𝑅)𝑌) = ( 1 (.r‘𝑅)𝑌)) | |
| 2 | dvreq1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | dvreq1.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 4 | dvreq1.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
| 5 | eqid 2206 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | 2, 3, 4, 5 | dvrcan1 13952 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌)(.r‘𝑅)𝑌) = 𝑋) |
| 7 | 2 | a1i 9 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝐵 = (Base‘𝑅)) |
| 8 | 3 | a1i 9 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 9 | ringsrg 13859 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 10 | 9 | adantr 276 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 11 | simpr 110 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 12 | 7, 8, 10, 11 | unitcld 13920 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
| 13 | dvreq1.t | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 14 | 2, 5, 13 | ringlidm 13835 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 15 | 12, 14 | syldan 282 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 16 | 15 | 3adant2 1019 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 17 | 6, 16 | eqeq12d 2221 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((𝑋 / 𝑌)(.r‘𝑅)𝑌) = ( 1 (.r‘𝑅)𝑌) ↔ 𝑋 = 𝑌)) |
| 18 | 1, 17 | imbitrid 154 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 → 𝑋 = 𝑌)) |
| 19 | 3, 4, 13 | dvrid 13949 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = 1 ) |
| 20 | 19 | 3adant2 1019 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = 1 ) |
| 21 | oveq1 5961 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋 / 𝑌) = (𝑌 / 𝑌)) | |
| 22 | 21 | eqeq1d 2215 | . . 3 ⊢ (𝑋 = 𝑌 → ((𝑋 / 𝑌) = 1 ↔ (𝑌 / 𝑌) = 1 )) |
| 23 | 20, 22 | syl5ibrcom 157 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 = 𝑌 → (𝑋 / 𝑌) = 1 )) |
| 24 | 18, 23 | impbid 129 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 .rcmulr 12960 1rcur 13771 SRingcsrg 13775 Ringcrg 13808 Unitcui 13899 /rcdvr 13943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-tpos 6341 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-iress 12890 df-plusg 12972 df-mulr 12973 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 df-cmn 13672 df-abl 13673 df-mgp 13733 df-ur 13772 df-srg 13776 df-ring 13810 df-oppr 13880 df-dvdsr 13901 df-unit 13902 df-invr 13933 df-dvr 13944 |
| This theorem is referenced by: lringuplu 14008 |
| Copyright terms: Public domain | W3C validator |