Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrev GIF version

Theorem fsumrev 11219
 Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1 (𝜑𝐾 ∈ ℤ)
fsumrev.2 (𝜑𝑀 ∈ ℤ)
fsumrev.3 (𝜑𝑁 ∈ ℤ)
fsumrev.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumrev.5 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumrev (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumrev
StepHypRef Expression
1 fsumrev.5 . 2 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
2 fsumrev.1 . . . 4 (𝜑𝐾 ∈ ℤ)
3 fsumrev.3 . . . 4 (𝜑𝑁 ∈ ℤ)
42, 3zsubcld 9185 . . 3 (𝜑 → (𝐾𝑁) ∈ ℤ)
5 fsumrev.2 . . . 4 (𝜑𝑀 ∈ ℤ)
62, 5zsubcld 9185 . . 3 (𝜑 → (𝐾𝑀) ∈ ℤ)
74, 6fzfigd 10211 . 2 (𝜑 → ((𝐾𝑁)...(𝐾𝑀)) ∈ Fin)
8 eqid 2139 . . 3 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)) = (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))
92adantr 274 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝐾 ∈ ℤ)
10 elfzelz 9813 . . . . 5 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℤ)
1110adantl 275 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑗 ∈ ℤ)
129, 11zsubcld 9185 . . 3 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑗) ∈ ℤ)
132adantr 274 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
14 elfzelz 9813 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
1514adantl 275 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
1613, 15zsubcld 9185 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐾𝑘) ∈ ℤ)
17 simprr 521 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 = (𝐾𝑗))
18 simprl 520 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
195adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑀 ∈ ℤ)
203adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑁 ∈ ℤ)
212adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℤ)
2218, 10syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℤ)
23 fzrev 9871 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2419, 20, 21, 22, 23syl22anc 1217 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2518, 24mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑗) ∈ (𝑀...𝑁))
2617, 25eqeltrd 2216 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 ∈ (𝑀...𝑁))
2717oveq2d 5790 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
28 zcn 9066 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
29 zcn 9066 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
30 nncan 7998 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾𝑗)) = 𝑗)
3128, 29, 30syl2an 287 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐾 − (𝐾𝑗)) = 𝑗)
3221, 22, 31syl2anc 408 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾 − (𝐾𝑗)) = 𝑗)
3327, 32eqtr2d 2173 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 = (𝐾𝑘))
3426, 33jca 304 . . . 4 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘)))
35 simprr 521 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 = (𝐾𝑘))
36 simprl 520 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ (𝑀...𝑁))
375adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑀 ∈ ℤ)
383adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑁 ∈ ℤ)
392adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℤ)
4036, 14syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℤ)
41 fzrev2 9872 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4237, 38, 39, 40, 41syl22anc 1217 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4336, 42mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀)))
4435, 43eqeltrd 2216 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
4535oveq2d 5790 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
46 zcn 9066 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
47 nncan 7998 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 − (𝐾𝑘)) = 𝑘)
4828, 46, 47syl2an 287 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐾 − (𝐾𝑘)) = 𝑘)
4939, 40, 48syl2anc 408 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾 − (𝐾𝑘)) = 𝑘)
5045, 49eqtr2d 2173 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 = (𝐾𝑗))
5144, 50jca 304 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)))
5234, 51impbida 585 . . 3 (𝜑 → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))))
538, 12, 16, 52f1od 5973 . 2 (𝜑 → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)):((𝐾𝑁)...(𝐾𝑀))–1-1-onto→(𝑀...𝑁))
54 simpr 109 . . 3 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)))
552adantr 274 . . . 4 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝐾 ∈ ℤ)
56 elfzelz 9813 . . . . 5 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑘 ∈ ℤ)
5756adantl 275 . . . 4 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ℤ)
5855, 57zsubcld 9185 . . 3 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑘) ∈ ℤ)
59 oveq2 5782 . . . 4 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
6059, 8fvmptg 5497 . . 3 ((𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ (𝐾𝑘) ∈ ℤ) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
6154, 58, 60syl2anc 408 . 2 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
62 fsumrev.4 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
631, 7, 53, 61, 62fsumf1o 11166 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480   ↦ cmpt 3989  ‘cfv 5123  (class class class)co 5774  ℂcc 7625   − cmin 7940  ℤcz 9061  ...cfz 9797  Σcsu 11129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-ihash 10529  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130 This theorem is referenced by:  fisumrev2  11222
 Copyright terms: Public domain W3C validator