Proof of Theorem fsumrev
Step | Hyp | Ref
| Expression |
1 | | fsumrev.5 |
. 2
⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) |
2 | | fsumrev.1 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ℤ) |
3 | | fsumrev.3 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
4 | 2, 3 | zsubcld 9339 |
. . 3
⊢ (𝜑 → (𝐾 − 𝑁) ∈ ℤ) |
5 | | fsumrev.2 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | 2, 5 | zsubcld 9339 |
. . 3
⊢ (𝜑 → (𝐾 − 𝑀) ∈ ℤ) |
7 | 4, 6 | fzfigd 10387 |
. 2
⊢ (𝜑 → ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∈ Fin) |
8 | | eqid 2170 |
. . 3
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) = (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)) |
9 | 2 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → 𝐾 ∈ ℤ) |
10 | | elfzelz 9981 |
. . . . 5
⊢ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → 𝑗 ∈ ℤ) |
11 | 10 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → 𝑗 ∈ ℤ) |
12 | 9, 11 | zsubcld 9339 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → (𝐾 − 𝑗) ∈ ℤ) |
13 | 2 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
14 | | elfzelz 9981 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ) |
15 | 14 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ) |
16 | 13, 15 | zsubcld 9339 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐾 − 𝑘) ∈ ℤ) |
17 | | simprr 527 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 = (𝐾 − 𝑗)) |
18 | | simprl 526 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
19 | 5 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑀 ∈ ℤ) |
20 | 3 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑁 ∈ ℤ) |
21 | 2 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝐾 ∈ ℤ) |
22 | 18, 10 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 ∈ ℤ) |
23 | | fzrev 10040 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
24 | 19, 20, 21, 22, 23 | syl22anc 1234 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↔ (𝐾 − 𝑗) ∈ (𝑀...𝑁))) |
25 | 18, 24 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑗) ∈ (𝑀...𝑁)) |
26 | 17, 25 | eqeltrd 2247 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑘 ∈ (𝑀...𝑁)) |
27 | 17 | oveq2d 5869 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − 𝑘) = (𝐾 − (𝐾 − 𝑗))) |
28 | | zcn 9217 |
. . . . . . . 8
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
29 | | zcn 9217 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
30 | | nncan 8148 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
31 | 28, 29, 30 | syl2an 287 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
32 | 21, 22, 31 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝐾 − (𝐾 − 𝑗)) = 𝑗) |
33 | 27, 32 | eqtr2d 2204 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → 𝑗 = (𝐾 − 𝑘)) |
34 | 26, 33 | jca 304 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) |
35 | | simprr 527 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 = (𝐾 − 𝑘)) |
36 | | simprl 526 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ (𝑀...𝑁)) |
37 | 5 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑀 ∈ ℤ) |
38 | 3 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑁 ∈ ℤ) |
39 | 2 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝐾 ∈ ℤ) |
40 | 36, 14 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 ∈ ℤ) |
41 | | fzrev2 10041 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
42 | 37, 38, 39, 40, 41 | syl22anc 1234 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)))) |
43 | 36, 42 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑘) ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
44 | 35, 43 | eqeltrd 2247 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
45 | 35 | oveq2d 5869 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − 𝑗) = (𝐾 − (𝐾 − 𝑘))) |
46 | | zcn 9217 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℂ) |
47 | | nncan 8148 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
48 | 28, 46, 47 | syl2an 287 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
49 | 39, 40, 48 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝐾 − (𝐾 − 𝑘)) = 𝑘) |
50 | 45, 49 | eqtr2d 2204 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → 𝑘 = (𝐾 − 𝑗)) |
51 | 44, 50 | jca 304 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘))) → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗))) |
52 | 34, 51 | impbida 591 |
. . 3
⊢ (𝜑 → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ 𝑘 = (𝐾 − 𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾 − 𝑘)))) |
53 | 8, 12, 16, 52 | f1od 6052 |
. 2
⊢ (𝜑 → (𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗)):((𝐾 − 𝑁)...(𝐾 − 𝑀))–1-1-onto→(𝑀...𝑁)) |
54 | | simpr 109 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) |
55 | 2 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → 𝐾 ∈ ℤ) |
56 | | elfzelz 9981 |
. . . . 5
⊢ (𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) → 𝑘 ∈ ℤ) |
57 | 56 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → 𝑘 ∈ ℤ) |
58 | 55, 57 | zsubcld 9339 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → (𝐾 − 𝑘) ∈ ℤ) |
59 | | oveq2 5861 |
. . . 4
⊢ (𝑗 = 𝑘 → (𝐾 − 𝑗) = (𝐾 − 𝑘)) |
60 | 59, 8 | fvmptg 5572 |
. . 3
⊢ ((𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ∧ (𝐾 − 𝑘) ∈ ℤ) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
61 | 54, 58, 60 | syl2anc 409 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))) → ((𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀)) ↦ (𝐾 − 𝑗))‘𝑘) = (𝐾 − 𝑘)) |
62 | | fsumrev.4 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
63 | 1, 7, 53, 61, 62 | fsumf1o 11353 |
1
⊢ (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |