| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0unit | GIF version | ||
| Description: The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| 0unit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| 0unit.2 | ⊢ 0 = (0g‘𝑅) |
| 0unit.3 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| 0unit | ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0unit.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2196 | . . . 4 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 3 | eqid 2196 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 0unit.3 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 5 | 1, 2, 3, 4 | unitrinv 13761 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → ( 0 (.r‘𝑅)((invr‘𝑅)‘ 0 )) = 1 ) |
| 6 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | 1, 2, 6 | ringinvcl 13759 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → ((invr‘𝑅)‘ 0 ) ∈ (Base‘𝑅)) |
| 8 | 0unit.2 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 9 | 6, 3, 8 | ringlz 13677 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((invr‘𝑅)‘ 0 ) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)((invr‘𝑅)‘ 0 )) = 0 ) |
| 10 | 7, 9 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → ( 0 (.r‘𝑅)((invr‘𝑅)‘ 0 )) = 0 ) |
| 11 | 5, 10 | eqtr3d 2231 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → 1 = 0 ) |
| 12 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 1 = 0 ) | |
| 13 | 1, 4 | 1unit 13741 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
| 14 | 13 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 1 ∈ 𝑈) |
| 15 | 12, 14 | eqeltrrd 2274 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 0 ∈ 𝑈) |
| 16 | 11, 15 | impbida 596 | 1 ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12705 .rcmulr 12783 0gc0g 12960 1rcur 13593 Ringcrg 13630 Unitcui 13721 invrcinvr 13754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-tpos 6312 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-inn 9010 df-2 9068 df-3 9069 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-0g 12962 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-grp 13207 df-minusg 13208 df-cmn 13494 df-abl 13495 df-mgp 13555 df-ur 13594 df-srg 13598 df-ring 13632 df-oppr 13702 df-dvdsr 13723 df-unit 13724 df-invr 13755 |
| This theorem is referenced by: nzrunit 13822 aprirr 13917 |
| Copyright terms: Public domain | W3C validator |