ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodrev GIF version

Theorem fprodrev 12130
Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
fprodshft.1 (𝜑𝐾 ∈ ℤ)
fprodshft.2 (𝜑𝑀 ∈ ℤ)
fprodshft.3 (𝜑𝑁 ∈ ℤ)
fprodshft.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprodrev.5 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fprodrev (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝜑   𝑗,𝐾,𝑘   𝜑,𝑘   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fprodrev
StepHypRef Expression
1 fprodrev.5 . 2 (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)
2 fprodshft.1 . . . 4 (𝜑𝐾 ∈ ℤ)
3 fprodshft.3 . . . 4 (𝜑𝑁 ∈ ℤ)
42, 3zsubcld 9574 . . 3 (𝜑 → (𝐾𝑁) ∈ ℤ)
5 fprodshft.2 . . . 4 (𝜑𝑀 ∈ ℤ)
62, 5zsubcld 9574 . . 3 (𝜑 → (𝐾𝑀) ∈ ℤ)
74, 6fzfigd 10653 . 2 (𝜑 → ((𝐾𝑁)...(𝐾𝑀)) ∈ Fin)
8 eqid 2229 . . 3 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)) = (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))
92adantr 276 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝐾 ∈ ℤ)
10 elfzelz 10221 . . . . 5 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℤ)
1110adantl 277 . . . 4 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑗 ∈ ℤ)
129, 11zsubcld 9574 . . 3 ((𝜑𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑗) ∈ ℤ)
132adantr 276 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
14 elfzelz 10221 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
1514adantl 277 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
1613, 15zsubcld 9574 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐾𝑘) ∈ ℤ)
17 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 = (𝐾𝑗))
18 simprl 529 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
195adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑀 ∈ ℤ)
203adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑁 ∈ ℤ)
212adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℤ)
2210ad2antrl 490 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℤ)
23 fzrev 10280 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2419, 20, 21, 22, 23syl22anc 1272 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↔ (𝐾𝑗) ∈ (𝑀...𝑁)))
2518, 24mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑗) ∈ (𝑀...𝑁))
2617, 25eqeltrd 2306 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑘 ∈ (𝑀...𝑁))
27 oveq2 6009 . . . . . . 7 (𝑘 = (𝐾𝑗) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
2827ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾𝑘) = (𝐾 − (𝐾𝑗)))
292zcnd 9570 . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
3029adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝐾 ∈ ℂ)
3110zcnd 9570 . . . . . . . 8 (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑗 ∈ ℂ)
3231ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 ∈ ℂ)
3330, 32nncand 8462 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝐾 − (𝐾𝑗)) = 𝑗)
3428, 33eqtr2d 2263 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → 𝑗 = (𝐾𝑘))
3526, 34jca 306 . . . 4 ((𝜑 ∧ (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗))) → (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘)))
36 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 = (𝐾𝑘))
37 simprl 529 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ (𝑀...𝑁))
385adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑀 ∈ ℤ)
393adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑁 ∈ ℤ)
402adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℤ)
4114ad2antrl 490 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℤ)
42 fzrev2 10281 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4338, 39, 40, 41, 42syl22anc 1272 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀))))
4437, 43mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑘) ∈ ((𝐾𝑁)...(𝐾𝑀)))
4536, 44eqeltrd 2306 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)))
46 oveq2 6009 . . . . . . 7 (𝑗 = (𝐾𝑘) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
4746ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾𝑗) = (𝐾 − (𝐾𝑘)))
4829adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝐾 ∈ ℂ)
4914zcnd 9570 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℂ)
5049ad2antrl 490 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 ∈ ℂ)
5148, 50nncand 8462 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝐾 − (𝐾𝑘)) = 𝑘)
5247, 51eqtr2d 2263 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → 𝑘 = (𝐾𝑗))
5345, 52jca 306 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))) → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)))
5435, 53impbida 598 . . 3 (𝜑 → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ∧ 𝑘 = (𝐾𝑗)) ↔ (𝑘 ∈ (𝑀...𝑁) ∧ 𝑗 = (𝐾𝑘))))
558, 12, 16, 54f1od 6209 . 2 (𝜑 → (𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗)):((𝐾𝑁)...(𝐾𝑀))–1-1-onto→(𝑀...𝑁))
56 oveq2 6009 . . 3 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
57 simpr 110 . . 3 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)))
582adantr 276 . . . 4 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝐾 ∈ ℤ)
59 elfzelz 10221 . . . . 5 (𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀)) → 𝑘 ∈ ℤ)
6059adantl 277 . . . 4 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → 𝑘 ∈ ℤ)
6158, 60zsubcld 9574 . . 3 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → (𝐾𝑘) ∈ ℤ)
628, 56, 57, 61fvmptd3 5728 . 2 ((𝜑𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))) → ((𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀)) ↦ (𝐾𝑗))‘𝑘) = (𝐾𝑘))
63 fprodshft.4 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
641, 7, 55, 62, 63fprodf1o 12099 1 (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cmpt 4145  (class class class)co 6001  cc 7997  cmin 8317  cz 9446  ...cfz 10204  cprod 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-proddc 12062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator