| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lemul12bd | GIF version | ||
| Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltmul12ad.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| lemul12bd.4 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| lemul12bd.5 | ⊢ (𝜑 → 0 ≤ 𝐷) |
| lemul12bd.6 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| lemul12bd.7 | ⊢ (𝜑 → 𝐶 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| lemul12bd | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemul12bd.6 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | lemul12bd.7 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐷) | |
| 3 | ltp1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | lemul12bd.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 5 | 3, 4 | jca 306 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| 6 | divgt0d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 7 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 8 | ltmul12ad.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 9 | lemul12bd.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐷) | |
| 10 | 8, 9 | jca 306 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) |
| 11 | lemul12b 8964 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) | |
| 12 | 5, 6, 7, 10, 11 | syl22anc 1251 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
| 13 | 1, 2, 12 | mp2and 433 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4054 (class class class)co 5962 ℝcr 7954 0cc0 7955 · cmul 7960 ≤ cle 8138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |