| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lemul12ad | GIF version | ||
| Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltmul12ad.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| lemul12ad.4 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| lemul12ad.5 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| lemul12ad.6 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| lemul12ad.7 | ⊢ (𝜑 → 𝐶 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| lemul12ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemul12ad.6 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | lemul12ad.7 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐷) | |
| 3 | ltp1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | lemul12ad.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 5 | 3, 4 | jca 306 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| 6 | divgt0d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 7 | lemul1ad.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 8 | lemul12ad.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 9 | 7, 8 | jca 306 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 10 | ltmul12ad.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 11 | lemul12a 8906 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) | |
| 12 | 5, 6, 9, 10, 11 | syl22anc 1250 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
| 13 | 1, 2, 12 | mp2and 433 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℝcr 7895 0cc0 7896 · cmul 7901 ≤ cle 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 |
| This theorem is referenced by: faclbnd 10850 fprodge1 11821 fprodle 11822 |
| Copyright terms: Public domain | W3C validator |