ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzneg GIF version

Theorem uzneg 9239
Description: Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.)
Assertion
Ref Expression
uzneg (𝑁 ∈ (ℤ𝑀) → -𝑀 ∈ (ℤ‘-𝑁))

Proof of Theorem uzneg
StepHypRef Expression
1 eluzle 9233 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
2 eluzel2 9226 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 eluzelz 9230 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 zre 8955 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 8955 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 leneg 8139 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ -𝑁 ≤ -𝑀))
74, 5, 6syl2an 285 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑁 ≤ -𝑀))
82, 3, 7syl2anc 406 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀𝑁 ↔ -𝑁 ≤ -𝑀))
91, 8mpbid 146 . 2 (𝑁 ∈ (ℤ𝑀) → -𝑁 ≤ -𝑀)
10 znegcl 8982 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
11 znegcl 8982 . . . 4 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
12 eluz 9234 . . . 4 ((-𝑁 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 ∈ (ℤ‘-𝑁) ↔ -𝑁 ≤ -𝑀))
1310, 11, 12syl2an 285 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (-𝑀 ∈ (ℤ‘-𝑁) ↔ -𝑁 ≤ -𝑀))
143, 2, 13syl2anc 406 . 2 (𝑁 ∈ (ℤ𝑀) → (-𝑀 ∈ (ℤ‘-𝑁) ↔ -𝑁 ≤ -𝑀))
159, 14mpbird 166 1 (𝑁 ∈ (ℤ𝑀) → -𝑀 ∈ (ℤ‘-𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1461   class class class wbr 3893  cfv 5079  cr 7539  cle 7718  -cneg 7850  cz 8951  cuz 9221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-addcom 7638  ax-addass 7640  ax-distr 7642  ax-i2m1 7643  ax-0lt1 7644  ax-0id 7646  ax-rnegex 7647  ax-cnre 7649  ax-pre-ltirr 7650  ax-pre-ltwlin 7651  ax-pre-lttrn 7652  ax-pre-ltadd 7654
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723  df-sub 7851  df-neg 7852  df-inn 8624  df-z 8952  df-uz 9222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator