| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprzcl2dc | GIF version | ||
| Description: The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 8061.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.) |
| Ref | Expression |
|---|---|
| suprzcl2dc.ss | ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| suprzcl2dc.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| suprzcl2dc.ub | ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| suprzcl2dc.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| suprzcl2dc | ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprzcl2dc.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℤ) | |
| 2 | suprzcl2dc.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 3 | suprzcl2dc.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) | |
| 4 | suprzcl2dc.ub | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 5 | 1, 2, 3, 4 | zsupssdc 10398 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 6 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝐴 ⊆ ℤ) |
| 7 | simprl 529 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ 𝐴) | |
| 8 | 6, 7 | sseldd 3198 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℤ) |
| 9 | 8 | zred 9510 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ) |
| 10 | simprrl 539 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) | |
| 11 | simprrr 540 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) | |
| 12 | lttri3 8167 | . . . . . 6 ⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) | |
| 13 | 12 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) |
| 14 | 13 | eqsupti 7112 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
| 15 | 9, 10, 11, 14 | mp3and 1353 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥) |
| 16 | 15, 7 | eqeltrd 2283 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| 17 | 5, 16 | rexlimddv 2629 | 1 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3170 class class class wbr 4050 supcsup 7098 ℝcr 7939 < clt 8122 ≤ cle 8123 ℤcz 9387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-n0 9311 df-z 9388 df-uz 9664 df-fz 10146 df-fzo 10280 |
| This theorem is referenced by: pcprecl 12682 |
| Copyright terms: Public domain | W3C validator |