| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprzcl2dc | GIF version | ||
| Description: The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 8116.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.) |
| Ref | Expression |
|---|---|
| suprzcl2dc.ss | ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| suprzcl2dc.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
| suprzcl2dc.ub | ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| suprzcl2dc.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| suprzcl2dc | ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprzcl2dc.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℤ) | |
| 2 | suprzcl2dc.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 3 | suprzcl2dc.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) | |
| 4 | suprzcl2dc.ub | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 5 | 1, 2, 3, 4 | zsupssdc 10453 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 6 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝐴 ⊆ ℤ) |
| 7 | simprl 529 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ 𝐴) | |
| 8 | 6, 7 | sseldd 3225 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℤ) |
| 9 | 8 | zred 9565 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ) |
| 10 | simprrl 539 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) | |
| 11 | simprrr 540 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) | |
| 12 | lttri3 8222 | . . . . . 6 ⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) | |
| 13 | 12 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 = 𝑣 ↔ (¬ 𝑢 < 𝑣 ∧ ¬ 𝑣 < 𝑢))) |
| 14 | 13 | eqsupti 7159 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
| 15 | 9, 10, 11, 14 | mp3and 1374 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥) |
| 16 | 15, 7 | eqeltrd 2306 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| 17 | 5, 16 | rexlimddv 2653 | 1 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 class class class wbr 4082 supcsup 7145 ℝcr 7994 < clt 8177 ≤ cle 8178 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 |
| This theorem is referenced by: pcprecl 12807 |
| Copyright terms: Public domain | W3C validator |